CORSO DI LAUREA IN ING. INFORMAZIONE CORSO DI LAUREA IN ING. CIVILE E INDUSTRIALE SEDE DIDATTICA DI LATINA - a.a. 2019/2020

prova scritta di ANALISI MATEMATICA 1 - 16 gennaio 2020

COMPITO A

COGNOME NOME matricola
corso di laurea IN ING TEORIA ORALE O SCRITTA?
DATE DISPONIBILI PER LA TEORIA
DATE NON DISPONIBILI PER LA TEORIA
GIUSTIFICARE ADEGUATAMENTE TUTTI I PASSAGGI
1) (5,5 punti) Risolvere il problema di Cauchy
$\begin{cases} x(y'(x) - y(x)) = (1+x^2)e^x \\ y(-1) = 0 \end{cases}$
2) (12,5 punti) Una volta determinato l'insieme di definizione, eventuali simmetrie e periodicità della funzion
$f(x) = \tan(x)\ln(\tan(x)) ,$
studiarne il grafico nell'intervallo $\left(0,\frac{\pi}{2}\right)$, nell'ipotesi di numero minimo di flessi .
3) (5 punti) Risolvere l'equazione $(z^2+1)^2-2(z^2+1)+17=0 ; z \in {\bf C}$
rappresentando le soluzioni nel piano di Gauss.
4) (6 punti) Studiare il carattere della serie $\sum_{n=2}^{+\infty} \left[\frac{\log_a(n)}{\ln(n)}\right]^n \ ,$
al variana di a > 1

al variare di a > 1.

5) (6 punti)

Stabilire, per mezzo dei criteri di integrabilità, se la funzione

$$f(x) = \frac{e^{-x} + x - 1}{x^{5/2}}$$

sia integrabile nell'intervallo $(0, +\infty)$.

CORSO DI LAUREA IN ING. INFORMAZIONE CORSO DI LAUREA IN ING. CIVILE E INDUSTRIALE SEDE DIDATTICA DI LATINA - a.a. 2019/2020

prova scritta di ANALISI MATEMATICA 1 - 16 gennaio 2020

COMPITO B

COGNOME	NOME	matricola	
corso di laurea IN ING	TEORIA O	RALE O SCRITTA?	
DATE DISPONIBILI PER LA TEORIA			
DATE NON DISPONIBILI	PER LA TEORIA		

GIUSTIFICARE ADEGUATAMENTE TUTTI I PASSAGGI

1) (6 punti)

Studiare il carattere della serie

$$\sum_{n=2}^{+\infty} \left[\frac{\ln(n)}{\log_a(n)} \right]^n ,$$

al variare di a > 1.

2) (6 punti)

Stabilire, per mezzo dei criteri di integrabilità, se la funzione

$$f(x) = \frac{\ln(1+x) - x + \frac{x^2}{2}}{x^{7/2}}$$

sia integrabile nell'intervallo $(0, +\infty)$.

3) (5,5 punti)

Risolvere il problema di Cauchy

$$\begin{cases} x^2(y'(x) + y(x)) = (x + x^3)e^{-x} \\ y(-1) = 0 \end{cases}.$$

4) (12,5 punti)

Una volta determinato l'insieme di definizione, eventuali simmetrie e periodicità della funzione

$$f(x) = \frac{\ln(\tan(x))}{\tan(x)} ,$$

studiarne il grafico nell'intervallo $\left(0, \frac{\pi}{2}\right)$, nell'ipotesi di numero minimo di flessi.

5) (5 punti)

Risolvere l'equazione

$$(z^2 - 1)^2 + 2(z^2 - 1) + 17 = 0$$
 ; $z \in \mathbf{C}$

rappresentando le soluzioni nel piano di Gauss.