CORSO DI LAUREA IN ING. INFORMAZIONE SEDE DISTACCATA DI LATINA - a.a. 2012/2013

prova scritta di ANALISI MATEMATICA 1 - 28 gennaio 2013

COMPITO A

COGNOME NOME matricola
PORTA COME PROGRAMMA LE EQUAZIONI DIFFERENZIALI?
TEORIA ORALE O SCRITTA?
DATE DISPONIBILI PER LA TEORIA
DATE NON DISPONIBILI PER LA TEORIA
GIUSTIFICARE ADEGUATAMENTE TUTTI I PASSAGGI
1) Risolvere la seguente equazione nel campo complesso:
$z^4 - 8z = 0.$
2) Data la serie $\sum_{n=1}^{\infty} \frac{\log (1-e^{-n})}{\sqrt{n^2+1}} \ ,$
a) determinare il segno dei suoi addendi;b) studiarne il carattere.
3) Data la funzione $f(x) = \log(\sin x) \cdot \cot x \; ,$
a) determinarne il segno nell'intervallo $\left(0, \frac{\pi}{2}\right)$;
b) (FAC.) stabilire se sia integrabile in $\left(0, \frac{\pi}{2}\right)$, per mezzo dei criteri di integrabilità;
c) calcolarne l'integrale in $\left(0, \frac{\pi}{2}\right)$.
4) Calcolare $\lim_{x \to 0} \frac{(1+x^2)^{\sqrt{1+x^2}} - 1}{x^2} \ .$
5) Data la funzione $f(x) = \log(\log(1+x^2)) + \log(1+x^2) \; ,$

- a) determinarne l'insieme di definizione;
- b) individuarne eventuali punti di singolarità o di discontinuità;
- c) determinarne i limiti per $x \to \pm \infty$ e per $x \to 0$;
- d) determinarne gli intervalli di monotonia e gli eventuali punti di massimo e di minimo relativi e assoluti.

CORSO DI LAUREA IN ING. INFORMAZIONE SEDE DISTACCATA DI LATINA - a.a. 2012/2013

prova scritta di ANALISI MATEMATICA 1 - 28 gennaio 2013

COMPITO B

COGNOME	NOME	matricola		
PORTA COME PRO	GRAMMA LE EQUA	AZIONI DIFFEREN	VZIALI?	
TEORIA ORALE O	SCRITTA?			
DATE DISPONIBILI	PER LA TEORIA .			
DATE NON DISPON	IBILI PER LA TEO	RIA		
GIUS	TIFICARE ADEGUA	ATAMENTE TUTT	I I PASSAGGI	
1) Calcolare				
,	$\lim_{x\to 0} \frac{\left(\mathrm{c}^{\alpha}\right)}{}$	$\frac{(\cos x)^{(1+x^2)} - 1}{x^2} \ .$		
2)				
Data la funzione	$f(x) = \log(a)$	$(\arctan x) + \arctan x$,		
a) determinarne l'insiemb) individuarne eventualc) determinarne gli evend) determinarne gli inter	i punti di singolarità o d tuali asintoti;		imo e di minimo re	elativi e assoluti.
3) Risolvere la seguente	equazione nel campo cor	mplesso:		
	z^4	+27z=0.		
4) Data la serie	$\sum_{n=1}^{\infty} \frac{\log n}{n}$	$\frac{\log\left(1-\sin\left(\frac{1}{n}\right)\right)}{\sqrt{n^2+2}} \ ,$		
a) determinare il segno di				

- **b)** studiarne il carattere.
- 5) Data la funzione

$$f(x) = \frac{1}{\sqrt{\sin x}} \cdot \cot x ,$$

- a) determinarne il segno nell'intervallo $\left(0, \frac{\pi}{2}\right)$; b) (FAC.) stabilire se sia integrabile in $\left(0, \frac{\pi}{2}\right)$, per mezzo dei criteri di integrabilità;
- c) calcolarne l'integrale in $\left(0, \frac{\pi}{2}\right)$.