ONLINE SUPPLEMENTARY MATERIAL

http://www.dmmm.uniroma1.it/~bersani/mousetrap.html/tables.pdf

	$s=2$	$s=3$	$s=4$
$m=2$	$\begin{aligned} & \hline \hline 6 \\ & 4 / 4(3 / 3)-S C \\ & \text { immediate } \end{aligned}$	$\begin{aligned} & \hline \hline 20 \\ & 7 / 7(5 / 5)-S C \end{aligned}$ immediate	$\begin{aligned} & \hline \hline 70 \\ & 10 / 10(7 / 7)-S C \end{aligned}$ immediate
$m=3$	$\begin{aligned} & 90 \\ & 9 / 10(5 / 5)-W C \end{aligned}$ immediate	$\begin{aligned} & 1680 \\ & 16 / 16(8 / 8)-S C \end{aligned}$ immediate	$\begin{aligned} & 34650 \\ & 22 / 22(11 / 11)-S C \end{aligned}$ immediate
$m=4$	$\begin{aligned} & 2520 \\ & 17 / 18(7 / 7)-W C \\ & \text { immediate } \end{aligned}$	$\begin{aligned} & 369600 \\ & 28 / 28(11 / 11)-S C \\ & \text { immediate } \end{aligned}$	$\begin{aligned} & 63063000 \\ & 38 / 38(15 / 15)-S C \\ & \text { immediate } \end{aligned}$
$m=5$	$\begin{aligned} & 113400 \\ & 27 / 28(9 / 9)-W C \\ & \text { immediate } \end{aligned}$	$\begin{aligned} & 168168000 \\ & 43 / 43(14 / 14)-S C \\ & 355,932 \end{aligned}$	$\begin{aligned} & \sim 3.06 \cdot 10^{11} \\ & 58 / 58(19 / 19)-S C \\ & 14,461,409 \end{aligned}$
$m=6$	$\begin{aligned} & 7484400 \\ & 40 / 40(11 / 11)-S C \\ & 4,530,195 \end{aligned}$	$\begin{aligned} & \sim 1.37 \cdot 10^{11} \\ & 61 / 61(17 / 17)-S C \\ & 123,289,316 \end{aligned}$	$\begin{aligned} & \sim 3.25 \cdot 10^{15} \\ & 82 / 82(23 / 23)-S C \\ & 314,429,118 \end{aligned}$
$m=7$	$\begin{aligned} & 681080400 \\ & 54 / 54(13 / 13)-S C \\ & 62,241,794 \end{aligned}$	$\begin{aligned} & \sim 1.83 \cdot 10^{14} \\ & 82 / 82(20 / 20)-S C \\ & 7,332,146,168 \end{aligned}$	$\begin{aligned} & \sim 6.65 \cdot 10^{19} \\ & 110 / 110(27 / 27)-S C \\ & 63,227,020,954 \end{aligned}$
$m=8$	$\begin{aligned} & \sim 8.17 \cdot 10^{10} \\ & 70 / 70(15 / 15)-S C \\ & 4,152,727,936 \end{aligned}$	$\begin{aligned} & \sim 3.69 \cdot 10^{17} \\ & 106 / 106(23 / 23)-S C \\ & \sim 147,000,000,000 \end{aligned}$	$\begin{aligned} & \sim 2.39 \cdot 10^{24} \\ & 139 / 142(31 / 31)-W C \\ & \sim 264,386,000,000 \end{aligned}$
$m=9$	$\begin{aligned} & \sim 1.25 \cdot 10^{13} \\ & 88 / 88(17 / 17)-S C \\ & \sim 90,000,000,000 \end{aligned}$	$\begin{aligned} & \sim 1.08 \cdot 10^{21} \\ & 131 / 133(26 / 26)-W C \\ & \sim 255,000,000,000 \end{aligned}$	$\begin{aligned} & \sim 1.41 \cdot 10^{29} \\ & 172 / 178(34 / 35) \\ & >207,000,000,000 \end{aligned}$
$m=10$	$\begin{aligned} & \sim 2.38 \cdot 10^{15} \\ & 106 / 108(19 / 19)-W C \\ & >600,000,000,000 \end{aligned}$	$\begin{aligned} & \sim 4.39 \cdot 10^{24} \\ & 154 / 163(28 / 29) \\ & >81,000,000,000 \\ & \hline \end{aligned}$	$\begin{aligned} & \sim 1.29 \cdot 10^{34} \\ & 205 / 218(37 / 39) \\ & >217,000,000,000 \\ & \hline \end{aligned}$
$m=11$	$\begin{aligned} & \hline \sim 5.49 \cdot 10^{17} \\ & 128 / 130(21 / 21)-W C \\ & 92,800,000,000 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \sim 2.39 \cdot 10^{28} \\ & 184 / 196(31 / 32) \\ & 36,700,000,000 \end{aligned}$	$\begin{aligned} & \hline \sim 1.75 \cdot 10^{39} \\ & 224 / 262(39 / 43) \\ & 2,000,000,000 \end{aligned}$
$m=12$	$\begin{aligned} & \sim 1.51 \cdot 10^{20} \\ & 139 / 154(22 / 23) \\ & 12,000,000,000 \end{aligned}$	$\begin{aligned} & \sim 1.71 \cdot 10^{32} \\ & 204 / 232(33 / 35) \\ & 2,000,000,000 \end{aligned}$	$\begin{aligned} & \hline \sim 3.40 \cdot 10^{44} \\ & 273 / 310(43 / 47) \\ & 1,000,000,000 \end{aligned}$
$m=13$	$\begin{aligned} & \hline \sim 4.92 \cdot 10^{22} \\ & 158 / 180(22 / 25) \\ & 2,000,000,000 \end{aligned}$	$\begin{aligned} & \sim 1.56 \cdot 10^{36} \\ & 235 / 271(34 / 38) \\ & 5,000,000,000 \end{aligned}$	$\begin{aligned} & \hline \sim 9.20 \cdot 10^{49} \\ & 305 / 362(45 / 51) \\ & 4,000,000,000 \end{aligned}$

Table 1 - BEST SCORES IN $(H L M)^{2} N$ OBTAINED WITH MONTE CARLO METHODS
In each box of this table we report the number $N_{m \cdot s}$ of different decks; the ratio between the best score and $C_{m a x}$; the ratio between the best number of stored cards and the number predicted by (WC); the number of simulations performed before achieving the first winning deck or performed without obtaining any winning deck. The number of simulations is given by the sum of the trials done by F. Scigliano and by myself, while I have no information about the number of simulations done by A. Pompili. The symbols $S C$ and $W C$ indicate respectively if we proved the strong or the weak conjecture.

	$s=2$	$s=3$	$s=4$
$m=2$	$3 / 6 ; P_{\text {max }}=0.5$	$4 / 20 ; ~ P_{\text {max }}=0.2$	15/70; $P_{\max } \sim 0.21$
$m=3$	$0 / 90 ; P_{\max }=0$	4/1680 ; $P_{\text {max }} \sim 0.0024$	$5 / 34650$; $P_{\max } \sim 0.00014$
$m=4$	$0 / 2520 ; P_{\text {max }}=0$	$\begin{aligned} & 9 / 369,600 \\ & P_{\max } \sim 0.000024 \end{aligned}$	$\begin{aligned} & 229 / 63,063,000 \\ & P_{\text {max }} \sim 0.0000036 \end{aligned}$
$m=5$	$0 / 113400 ; P_{\text {max }}=0$	$\begin{aligned} & 63 / 168,168,000 \\ & P_{\text {max }} \sim 0.000000375 \end{aligned}$	$\begin{aligned} & 10568 / 3.06 \cdot 10^{11} \\ & P_{\max } \sim 0.000000035 \end{aligned}$
$m=6$	$\begin{aligned} & 1 / 7,484,400 \\ & P_{\max } \sim 1.34 \cdot 10^{-7} \end{aligned}$	$\begin{aligned} & 1177 / 1.37 \cdot 10^{11} \\ & P_{\max } \sim 0.000000009 \end{aligned}$	$\begin{aligned} & 1,212,483 / 3.25 \cdot 10^{15} \\ & P_{\max } \sim 3.73 \cdot 10^{-10} \end{aligned}$
$m=7$	$\begin{aligned} & 7 / 681,080,400 \\ & P_{\max } \sim 1.00 \cdot 10^{-8} \end{aligned}$	$\begin{aligned} & 36144 / 1.83 \cdot 10^{14} \\ & P_{\max } \sim 1.98 \cdot 10^{-10} \end{aligned}$	$\begin{aligned} & 411,488,689 / 6.65 \cdot 10^{19} \\ & P_{\max } \sim 6.19 \cdot 10^{-12} \end{aligned}$
$m=8$	$\begin{aligned} & 8 / 8.17 \cdot 10^{10} \\ & P_{\max } \sim 9.79 \cdot 10^{-11} \end{aligned}$	$\begin{aligned} & 1,677,968 / 3.69 \cdot 10^{17} \\ & P_{\max } \sim 4.54 \cdot 10^{-12} \end{aligned}$	
$m=9$	$\begin{aligned} & 105 / 1.25 \cdot 10^{13} \\ & P_{\max } \sim 8.40 \cdot 10^{-12} \end{aligned}$	$\begin{aligned} & 127,255,522 / 1.08 \cdot 10^{21} \\ & P_{\max } \sim 1.18 \cdot 10^{-13} \end{aligned}$	
$m=10$	$\begin{aligned} & 656 / 2.38 \cdot 10^{15} \\ & P_{\max } \sim 2.76 \cdot 10^{-13} \end{aligned}$	$\begin{aligned} & 14,569,821,371 / 4.39 \cdot 10^{24} \\ & P_{\max } \sim 3.32 \cdot 10^{-15} \end{aligned}$	
$m=11$	$\begin{aligned} & \hline 6745 / 5.49 \cdot 10^{17} \\ & P_{\max } \sim 1.23 \cdot 10^{-14} \\ & \hline \end{aligned}$		
$m=12$	$\begin{aligned} & 76823 / 1.51 \cdot 10^{20} \\ & P_{\max } \sim 5.07 \cdot 10^{-16} \end{aligned}$		
$m=13$	$\begin{aligned} & 986,994 / 4.92 \cdot 10^{22} \\ & P_{\text {max }} \sim 2.00 \cdot 10^{-17} \end{aligned}$		
$m=14$	$\begin{aligned} & 17,175,636 / 1.86 \cdot 10^{25} \\ & P_{\max } \sim 9.23 \cdot 10^{-19} \end{aligned}$		
$m=15$	$\begin{aligned} & \hline 320,152,788 / 8.09 \cdot 10^{27} \\ & P_{\max } \sim 3.96 \cdot 10^{-20} \\ & \hline \end{aligned}$		
$m=16$	$\begin{aligned} & 7,062,519,606 / 4.02 \cdot 10^{30} \\ & P_{\max } \sim 1.76 \cdot 10^{-21} \end{aligned}$		

Table 2 - WINNING DECKS AT HE LOVES ME HE LOVES ME NOT
In each box we report the ratio between the number of winning decks and the total number of decks and the winning probability $P_{\max }=P\left(C_{\max }\right)$.

	$s=1$	winning deck(s)
$m=2$	$1 / 1(1 / 1)$	1,2
$m=3$	$3 / 4(1 / 2$ and $2 / 2)$	three decks
$m=4$	$6 / 8(3 / 3)$	$2,1,3,4$
$m=5$	$9 / 13(3 / 4)$	$2,5,1,4,3$
$m=6$	$14 / 19(4 / 5)$	$6,1,4,3,5,2$
$m=7$	$18 / 26(4 / 6)$	$3,7,1,5,2,6,4$
$m=8$	$25 / 34(5 / 7)$	$8,1,5,2,6,4,7,3$
$m=9$	$31 / 43(7 / 8)$	$4,1,2,6,9,7,3,8,5$
$m=10$	$39 / 53(6 / 9)$	$10,1,6,2,7,3,8,5,9,4$
$m=11$	$47 / 64(8 / 10 a n d 9 / 10)$	six decks
$m=12$	$56 / 76(7 / 11 a n d 10 / 11)$	three decks
$m=13$	$67 / 89(11 / 12)$	two decks
$m=14$	$79 / 103(12 / 13)$	two decks
$m=15$	$93 / 118(13 / 14)$	two decks
$m=16$	$108 / 134(14 / 15)$	
$\ldots \ldots$		

Table 3
In this table we report the ratio between the best score at $(H L M)^{2} N$ with one suit and $C_{\max }$ and the ratio between the number of stored cards and the number of cards satisfying (WC). In some cases it is possible to obtain the same best score with a different number of cards. When there is only one winning deck, we report it in the third column.

	$s=1$	$s=2$	$s=3$	$s=4$
$m=2$	$1 / 2 ; P=0.5 \quad[\mathbf{G}-\mathbf{N}]$	$3 / 6 ; P=0.5$	$4 / 20 ; P=0.2$	15/70; $P \sim 0.21$
$m=3$	$2 / 6 ; P \sim 0.33 \quad[\mathbf{G}-\mathbf{N}]$	12/90; P ~ 0.13	90/1680 ; P ~ 0.054	$675 / 34650$; $P \sim 0.019$
$m=4$	$6 / 24 ; P=0.25 \quad[\mathbf{G}-\mathbf{N}]$	147/2520 ; P ~ 0.058	$\begin{aligned} & 5232 / 369,600 \\ & P \sim 0.014 \end{aligned}$	$\begin{aligned} & 210,069 / 63,063,000 \\ & P \sim 0.0033 \end{aligned}$
$m=5$	$\begin{array}{ll} \hline 15 / 120 & \\ P=0.125 & {[\mathbf{G}-\mathbf{N}]} \end{array}$	$\begin{aligned} & 2322 / 113,400 \\ & P \sim 0.020 \end{aligned}$	$\begin{aligned} & 476,042 / 168,168,000 \\ & P \sim 0.0028 \end{aligned}$	$\begin{aligned} & 119,375,881 / 3.06 \cdot 10^{11} \\ & P \sim 0.00039 \end{aligned}$
$m=6$	$\begin{aligned} & 84 / 720 \\ & P \sim 0.12 \quad[\mathbf{G}-\mathbf{N}] \end{aligned}$	$\begin{aligned} & 71629 / 7,484,400 \\ & P \sim 0.0096 \end{aligned}$	$\begin{aligned} & 111,660,352 / 1.37 \cdot 10^{11} \\ & P \sim 0.00081 \end{aligned}$	$P \sim 0.000070 \quad[\mathrm{MC}]$
$m=7$	$\begin{array}{ll} 330 / 5040 \\ P \sim 0.065 & {[\mathbf{G}-\mathbf{N}]} \end{array}$	$\begin{aligned} & 2,214,258 / 681,080,400 \\ & P \sim 0.0033 \end{aligned}$	$P \sim 0.00016 \quad[\mathrm{MC}]$	$P \sim 0.0000081 \quad[\mathrm{MC}]$
$m=8$	$\begin{array}{ll} 1812 / 40320 \\ P \sim 0.045 & {[\mathbf{G}-\mathbf{N}]} \end{array}$	$\begin{aligned} & 118,228,868 / 8.17 \cdot 10^{10} \\ & P \sim 0.0014 \end{aligned}$	$P \sim 0.000046 \quad[\mathrm{MC}]$	$P \sim 0.0000015 \quad[\mathrm{MC}]$
$m=9$	$\begin{aligned} & 9978 / 362,880 \\ & P \sim 0.027 \quad[\mathbf{G}-\mathbf{N}] \end{aligned}$	$\begin{aligned} & 6,597,279,578 / 1.25 \cdot 10^{13} \\ & P \sim 0.00053 \end{aligned}$	$P \sim 0.000010 \quad[\mathrm{MC}]$	$P \sim 0.0000002 \quad[\mathrm{MC}]$
$m=10$	$\begin{aligned} & 65503 / 3,628,800 \\ & P \sim 0.018 \quad[\mathbf{C}-\mathbf{S}] \end{aligned}$	$P \sim 0.00022 \quad[\mathrm{MC}]$	$P \sim 0.0000026 \quad[\mathrm{MC}]$	$P \sim 0.00000003 \quad[\mathrm{MC}]$
$m=11$	$\begin{aligned} & 449,719 / 39,916,800 \\ & P \sim 0.011 \quad[\mathbf{C}-\mathbf{S}] \end{aligned}$	$P \sim 0.000083 \quad[\mathrm{MC}]$	$P \sim 0.0000006 \quad[\mathrm{MC}]$	$2 \cdot 10^{-9}<P<6 \cdot 10^{-9} \quad[\mathbf{M C}]$
$m=12$	$\begin{aligned} & 3,674,670 / 479,001,600 \\ & P \sim 0.0077 \quad[\mathbf{C}-\mathbf{S}] \end{aligned}$	$P \sim 0.000036 \quad[\mathrm{MC}]$	$P \sim 0.000000084 \quad[\mathrm{MC}]$	$10^{-10}<P<10^{-9} \quad[\mathrm{MC}]$
$m=13$	$\begin{aligned} & 28,886,593 / 6,227,020,800 \\ & P \sim 0.0046 \quad[\mathbf{C}-\mathbf{S}] \end{aligned}$	$P \sim 0.000013 \quad[\mathrm{MC}]$	$3 \cdot 10^{-8}<P<5 \cdot 10^{-8} \quad[\mathrm{MC}]$	$10^{-11}<P<10^{-10} \quad[\mathrm{MC}]$
$m=14$	$\begin{aligned} & 266,242,729 / 8.72 \cdot 10^{10} \\ & P \sim 0.0031 \end{aligned}$			
$m=15$	$\begin{aligned} & 2,527,701,273 / 1.31 \cdot 10^{12} \\ & P \sim 0.0019 \end{aligned}$			
$m=16$	$\begin{aligned} & 25,749,021,720 / 2.09 \cdot 10^{13} \\ & P \sim 0.0012 \end{aligned}$			

Table 4 - WINNING DECKS AT MOUSETRAP

In each box we report the ratio between the number of winning decks and $N_{m \cdot s}$ and the winning probability $P:=P_{M, m \cdot s}(m \cdot s)$. We indicate with $[\mathbf{G}-\mathbf{N}]$ and with $[\mathbf{C}-\mathbf{S}]$ the results already quoted respectively in [9] and in [4], [17]. We indicate with [MC] the estimates obtained by means of Monte Carlo simulations.

	$s=1$	$s=2$	$s=3$	$s=4$
$m=2$	1/2; $P=0.5[\mathrm{G}-\mathrm{N}]$	$5 / 6 ; P \sim 0.83$	19/20; $P=0.95$	69/70; P ~ 0.986
$m=3$	$4 / 6 ; P \sim 0.67$ [G-N]	$60 / 90$; $P \sim 0.67$	1081/1680 ; P ~ 0.64	$\begin{gathered} 22898 / 34650 \\ P \sim 0.66 \end{gathered}$
$m=4$	9/24; $P=0.375$ [G-N]	1182/2520; P ~ 0.47	$\begin{aligned} & 173,053 / 369,600 \\ & P \sim 0.47 \end{aligned}$	$\begin{aligned} & 29,642,185 / 63,063,000 \\ & P \sim 0.47 \end{aligned}$
$m=5$	76/120; P ~ 0.633 [G-N]	$\begin{aligned} & 63063 / 113,400 \\ & P \sim 0.56 \end{aligned}$	86, 636, 303/168, 168, 000 $P \sim 0.52$	$P \sim 0.49$ [MC]
$m=6$	190/720; P ~ 0.26	$\begin{aligned} & 1,797,350 / 7,484,400 \\ & P \sim 0.24 \end{aligned}$	$P \sim 0.23$ [MC]	$P \sim 0.22$ [MC]
$m=7$	3186/5040; $P \sim 0.632143$	364, 572, 156/681, 080, 400 $P \sim 0.54$	$P \sim 0.49$ [MC]	$P \sim 0.46$ [MC]
$m=8$	$\begin{aligned} & 11351 / 40320 \\ & P \sim 0.28 \end{aligned}$	$P \sim 0.24$ [MC]	$P \sim 0.22$ [MC]	$P \sim 0.21$ [MC]
$m=9$	$\begin{aligned} & 132,684 / 362,880 \\ & P \sim 0.37 \end{aligned}$	$P \sim 0.31$ [MC]	$P \sim 0.28$ [MC]	$P \sim 0.27$ [MC]
$m=10$	$\begin{aligned} & 884,371 / 3,628,800 \\ & P \sim 0.24 \\ & \hline \end{aligned}$	$P \sim 0.20$ [MC]	$P \sim 0.18$ [MC]	$P \sim 0.18$ [MC]
$m=11$	$\begin{aligned} & 25,232,230 / 39,916,800 \\ & P \sim 0.632120561 \end{aligned}$	$P \sim 0.53$ [MC]	$P \sim 0.48$ [MC]	$P \sim 0.45$ [MC]
$m=12$	$\begin{aligned} & 50,436,488 / 479,001,600 \\ & P \sim 0.11 \\ & \hline \end{aligned}$	$P \sim 0.085$ [MC]	$P \sim 0.077$ [MC]	$P \sim 0.073$ [MC]
$m=13$	$\begin{aligned} & 3,936,227,868 / 6,227,020,800 \\ & P \sim 0.632120559[\mathbf{A 0 0 2 4 6 7}] \\ & \hline \end{aligned}$	$P \sim 0.53$ [MC]	$P \sim 0.48$ [MC]	$P \sim 0.45$ [MC]

Table 5 - WINNING DECKS AT MODULAR MOUSETRAP

In each box we report the ratio between the number of winning decks and $N_{m \cdot s}$ and the winning probability $P:=P_{M M, m \cdot s}(m \cdot s)$. We indicate with [G-N] the results already quoted in [9].

The result corresponding to $m=13, s=1$ can be also obtained subtracting the total number of derangements to the total number of decks, $n!=m!$ (because m is prime). We indicate it with [A002467]. We indicate with [MC] the estimates obtained by means of Monte Carlo simulations.

	unreformed	1-reformed	2-reformed	3-ref.	4-ref.	5-ref.	1-cycles	total reformed
$m=1$	0	0	0	0	0	0	1	1
$m=2$	1	0	0	0	0	0	1	1
$m=3$	4	2	0	0	0	0	0	2
$m=4$	18	4	2	0	0	0	0	6
$m=5$	105	14	1	0	0	0	0	15
$m=6$	636	72	11	1	0	0	0	84
$m=7$	4710	316	14	0	0	0	0	330
$m=8$	38508	1730	81	1	0	0	0	1812
$m=9$	352,902	9728	242	8	0	0	0	9978
$m=10$	$3,563,297$	64330	1142	31	0	0	0	65503
$m=11$	$39,467,081$	444,890	4771	56	2	0	0	449,719
$m=12$	$475,326,930$	$3,645,441$	29009	219	1	0	0	$3,674,670$
$m=13$	$6,198,134,207$	$28,758,111$	127,876	605	1	0	0	$28,886,593$
$m=14$	$86,912,048,471$	$265,434,293$	805,947	2485	4	0	0	$266,242,729$
$m=15$	$1,305,146,666,727$	$2,522,822,881$	$4,868,681$	9697	14	0	0	$2,527,701,273$
$m=16$	$20,897,040,866,280$	$25,717,118,338$	$31,862,753$	40571	57	1	0	$25,749,021,720$

Table 6
Number of unreformed and reformed decks at Mousetrap for $s=1$. The values for $1 \leq m \leq 9$ were reported by Guy and Nowakowski [9]. The values for $10 \leq m \leq 13$ were reported by Chua [4] and Sloane [17]. There is only one 5 -reformed deck for $m=16$. The first column extends the sequence [17] A007711; the second column extends [17] A007712; the third column extends [17] A055459; the fourth column extends [17] A067950; the last column extends [17] A007709; the sixth column corresponds to [17] A127966.

	unreformed	1-reformed	2-reformed	3-ref.	4-ref.	1-cycles	total reformed
$m=1$	1	0	0	0	0	1	1
$m=2$	3	2	0	0	0	1	3
$m=3$	78	12	0	0	0	0	12
$m=4$	2373	132	14	1	0	0	147
$m=5$	111,078	2270	51	1	0	0	2322
$m=6$	$7,412,771$	70766	857	6	0	0	71629
$m=7$	$678,866,142$	$2,207,169$	7071	18	0	0	$2,214,258$
$m=8$	$81,611,419,132$	$118,065,748$	162,871	249	0	0	$118,228,868$
$m=9$	$12,498,038,864,422$	$6,593,940,635$	$3,337,216$	1723	4	0	$6,597,279,578$

Table 7
Number of unreformed and reformed decks at Mousetrap for $s=2$. The case $m=9$ yielded for the first time four 4-reformed deck.

	unreformed	1-reformed	2-reformed	3-reformed	1-cycles	total reformed
$m=1$	0	0	0	0	1	1
$m=2$	16	3	0	0	1	4
$m=3$	1590	86	4	0	0	90
$m=4$	364,368	5148	84	2	0	5232
$m=5$	$167,691,958$	474,658	1384	1	0	476,042
$m=6$	$137,113,427,648$	$111,570,619$	89649	84	0	$111,660,352$

Table 8
Number of unreformed and reformed decks at Mousetrap for $s=3$. There is no evidence of 4 -reformed decks in any case we have examined.

	unreformed	1-reformed	2-reformed	3-reformed	1-cycles	total reformed
$m=1$	0	0	0	0	1	1
$m=2$	55	11	4	0	1	15
$m=3$	33975	639	35	0	1	675
$m=4$	$62,852,931$	209,411	658	0	0	210,069
$m=5$	$305,420,859,119$	$119,321,646$	54210	25	0	$119,375,881$

Table 9
Number of unreformed and reformed decks at Mousetrap for $s=4$. In the case $m=3$ we find for the first time a non-trivial 1-cycle: 111122322333. There is no evidence of 4-reformed decks, in any case we have examined.

	unreformed	k-reformed	cycles	total reformed
$m=1$	0	0	1	1
$m=2$	1	0	1	1
$m=3$	2	2	2	4
$m=4$	15	4	5	9
$m=5$	44	37	39	76
$m=6$	530	170	20	190
$m=7$	1854	2336	850	3186
$m=8$	28969	11077	274	11351
$m=9$	230,196	129,869	2815	132,684
$m=10$	$2,744,429$	883,700	671	884,371
$m=11$	$14,684,570$	$21,529,972$	$3,702,258$	$25,232,230$
$m=12$	$428,565,112$	$50,435,136$	1352	$50,436,488$
$m=13$	$2,290,792,932$	$3,456,154,665$	$480,073,203$	$3,936,227,868$

Table 10
Number of unreformed and reformed decks at Modular Mousetrap for $s=1$. The values for $1 \leq m \leq 5$ were reported by Guy and Nowakowski [9]. Since in this game, for $s=1$ and m prime, a deck can only either win or give a derangement, we can obtain the number of unreformed decks by a theoretical point of view because it coincides with the number of derangements (see sequences [17] A000166 and A002467 and formula ()).

	unreformed	k-reformed	cycles	total reformed
$m=1$	0	0	1	1
$m=2$	1	0	5	5
$m=3$	30	39	21	60
$m=4$	1338	1027	155	1182
$m=5$	50337	57581	5482	63063
$m=6$	$5,687,050$	$1,796,111$	1239	$1,797,350$
$m=7$	$316,508,244$	$364,074,715$	497,441	$364,572,156$

Table 11
Number of unreformed and reformed decks at Modular Mousetrap for $s=2$.

	unreformed	k-reformed	cycles	total reformed
$m=1$	0	0	1	1
$m=2$	1	0	19	19
$m=3$	599	615	466	1081
$m=4$	196,547	161,772	11281	173,053
$m=5$	$81,531,697$	$86,339,122$	297,181	$86,636,303$

Table 12
Number of unreformed and reformed decks at Modular Mousetrap for $s=3$.

	unreformed	k-reformed	cycles	total reformed
$m=1$	0	0	1	1
$m=2$	1	0	69	69
$m=3$	11752	15466	7432	22898
$m=4$	$33,420,815$	$29,381,680$	260,505	$29,642,185$

Table 13
Number of unreformed and reformed decks at Modular Mousetrap for $s=4$.

	MAX k-reformed	MAX k-trajectory	MAX k-pre-period	MAX k-cycle	number of 1-cycles
$m=1$	0	1	0	1	1
$m=2$	0	1	0	1	1
$m=3$	2	2	1	1	1
$m=4$	2	3	2	1	1
$m=5$	3	5	4	2	1
$m=6$	5	5	4	18	1
$m=7$	10	19	8	2	1
$m=8$	8	9	11	2	1
$m=9$	13	6	5	156	1
$m=10$	10	203	6	12	1
$m=11$	41	7	830	≥ 39923	1
$m=12$	8	≥ 39924		209	1
$m=13$	51				
$m=17$	≥ 51				

Table 14
Longest sequences of deck reformations in the different cases (k-reformations, loops, pre-loops, k-cycles) at Modular Mousetrap for $s=1$. In the last column we show the number of 1 -cycles. For every value of m, the permutation $\{1,2,3, \cdots, m-1, m\}$ gives a 1 -cycle. There is no evidence for other (non trivial) 1 -cycles. In the case $m=17$ we have examined only 50 million winning decks, because the total number of decks to be examined it too high. Since 17 is a prime number, it is highly probable that further investigation can improve the values we have up to now obtained.

	MAX k-reformed	MAX k-trajectory	MAX k-pre-period	MAX k-cycle	number of 1-cycles
$m=1$	0	1	0	1	1
$m=2$	0	3	2	1	2
$m=3$	4	3	2	1	2
$m=4$	9	7	5	2	2
$m=5$	14	15	14	3	2
$m=6$	13	7	6	2	2
$m=7$	29	24	23	2	8

Table 15
Longest sequences of deck reformations in the different cases (k-reformations, loops, pre-loops, k-cycles) at Modular Mousetrap for $s=2$. In the last column we report the number of 1 -cycles. For every value of m, the permutation $\{1,2,3, \cdots, m-1, m, 1,2,3, \cdots, m-1, m\}$ gives a 1-cycle. However, in this case we produced other (non trivial) 1-cycles.

	MAX k-reformed	MAX k-trajectory	MAX k-pre-period	MAX k-cycle	number of 1-cycles
$m=1$	0	1	0	1	1
$m=2$	0	4	2	2	2
$m=3$	8	10	7	6	3
$m=4$	17	12	10	2	5
$m=5$	30	19	18	4	10

Table 16
Longest sequences of deck reformations in the different cases (k-reformations, loops, pre-loops, k-cycles) at Modular Mousetrap for $s=3$. In the last column we report the number of 1 -cycles. For every value of m, the permutation $\{1,2,3, \cdots, m-1, m, \cdots 1,2,3, \cdots, m-1, m\}$ gives a 1-cycle. However, in this case we produced other (non trivial) 1-cycles.

	MAX k-reformed	MAX k-trajectory	MAX k-pre-period	MAX k-cycle	number of 1-cycles
$m=1$	0	1	0	1	1
$m=2$	0	5	3	3	3
$m=3$	15	12	11	4	6
$m=4$	28	17	14	3	10

Table 17
Longest sequences of deck reformations in the different cases (k-reformations, loops, pre-loops, k-cycles) at Modular Mousetrap for $s=4$. In the last column we report the number of 1 -cycles. For every value of m, the permutation $\{1,2,3, \cdots, m-1, m, \cdots 1,2,3, \cdots, m-1, m\}$ gives a 1-cycle. However, in this case we produced other (non trivial) 1-cycles.

	lowest value of n yielding a k-cycle	lowest value of n yielding a k-trajectory	lowest value of n yielding a k-reformed deck
$k=1$	1	1	3
$k=2$	5	3	3
$k=3$	10	4	5
$k=4$	11	5	6
$k=5$	-	5	6

Table 18
Lowest value of n which produces a k-cycle, or a k-trajectory, or a k-reformed deck at Modular Mousetrap, with $s=1$. The table is based on the complete results obtained for $m \leq 13$ and the partial results for $m=17$. Let us observe that for $m=11,13$ we found even longer k-cycles, corresponding only to the values $k=14,15,66$ for $m=11$ and $k=6,7,12$ for $m=13$. For $m=17$, up to now, we found only $1,2,170$, 209-cycles.

The first value of n yielding k-trajectories, for $6 \leq k \leq 19$, is 7 ; the first value of n yielding k-trajectories, for $20 \leq k \leq 203$, is 11 ; the first value of n yielding k-trajectories, for $204 \leq k \leq 840$, is 13 . Though in the case $m=17$, we have only partial results, we know that 17 is the first value of n yielding at least all the k-trajectories for $841 \leq k \leq 39924$.

The first value of n yielding k-reformed decks, for $6 \leq k \leq 10$, is 7 ; the first value of n yielding k reformed decks, for $11 \leq k \leq 13$, is 9 ; the first value of n yielding k-reformed decks, for $14 \leq k \leq 41$, is 11 ; the first value of n yielding k-reformed decks, for $42 \leq k \leq 51$, is 13 .

	$s=2(\mathrm{SC})$	$s=3$ (SC)	$s=4(\mathrm{SC})$
$m=1$	1 1-cycle 1 total reformed	1 1-cycle 1 total reformed	1 1-cycle 1 total reformed
$m=2$	1 1-cycle 2 1-reformed 3 total reformed	1 1-cycle 3 1-reformed 4 total reformed	$\begin{array}{lc} 1 & 1 \text {-cycle } \\ 10 & 1-\text { reformed } \\ 4 & 2-\text { reformed } \\ 15 & \text { total reformed } \end{array}$
$m=3$	only unreformed	4 1-reformed 4 total reformed	5 1-reformed 5 total reformed
$m=4$	only unreformed	9 1-reformed 9 total reformed	229 1-reformed 229 total reformed
$m=5$	only unreformed	63 1-reformed 63 total reformed	$\begin{array}{cl} \hline 10568 & 1 \text { - reformed } \\ 10568 & \text { total reformed } \\ \hline \end{array}$
$m=6$	1 1-reformed 1 total reformed	1177 1-reformed 1177 total reformed	$\begin{array}{ll} 1,212,483 & 1-\text { reformed } \\ 1,212,483 & \text { total reformed } \end{array}$
$m=7$	7 1-reformed 7 total reformed	36144 1-reformed 36144 total reformed	$\begin{array}{\|ll\|} \hline 411,488,689 & 1-\text { reformed } \\ 411,488,689 & \text { total reformed } \\ \hline \end{array}$
$m=8$	8 1-reformed 8 total reformed	$\begin{array}{ll} 1,677,968 & 1-\text { reformed } \\ 1,677,968 & \text { total reformed } \end{array}$	
$m=9$	105 1-reformed 105 total reformed	127,255,522 1 -reformed 127, 255, 522 total reformed	
$m=10$	656 1-reformed 656 total reformed	14, 569, 821,371 1 -reformed 14, 569, 821, 371 total reformed	
$m=11$	6745 1-reformed 6745 total reformed		
$m=12$	76823 1-reformed 76823 total reformed		
$m=13$	$\begin{array}{ll} \hline 986,994 & 1-\text { reformed } \\ 986,994 & \text { total reformed } \end{array}$		
$m=14$	$17,175,636$ $1-$ reformed $17,175,636$ total reformed		
$m=15$	320,152,788 1 -reformed 320, 152, 788 total reformed		
$m=16$	$\begin{array}{ll} 7,062,519,606 & 1-\text { reformed } \\ 7,062,519,606 & \text { total reformed } \end{array}$		

Table 19
Number of reformed decks satisfying (SC) at $(H L M)^{2} N$. Since the value of $P_{\max }$ decreases very quickly when m grows, we cannot expect 2 -reformed decks, apart from the case $m=2, s=4$.

	$s=2(\mathrm{WC})$	$s=3$ (WC)	$s=4(\mathrm{WC})$
$m=1$	11 -cycle 1 total reformed	11 -cycle 1 total reformed	11 -cycle 1 total reformed
$m=2$	1 1-cycle 2 1-reformed 3 total reformed	$\begin{array}{ll} 1 & 1-\text { cycle } \\ 4 & 1 \text {-reformed } \\ 5 & \text { total reformed } \end{array}$	1 1-cycles 10 1-reformed 42 -reformed 15 total reformed
$m=3$	6 1-reformed 6 total reformed	30 1-reformed 30 total reformed	$\begin{array}{ll} 160 & 1-\text { reformed } \\ 160 & \text { total reformed } \\ \hline \end{array}$
$m=4$	10 1-reformed 10 total reformed	278 1-reformed 278 total reformed	$7410 \quad 1$ - reformed 12 -reformed 7411 total reformed
$m=5$	56 1-reformed 56 total reformed	5027 1-reformed 5027 total reformed	669,948 1-reformed 4 2-reformed 669, 952 total reformed
$m=6$	200 1-reformed 200 total reformed	132,437 1-reformed 132,437 total reformed	133, 085, 352 1 -reformed 15 2-reformed 133, 085, 367 total reformed
$m=7$	$\begin{array}{ll} \hline 1094 & 1-\text { reformed } \\ 1094 & \text { total reformed } \end{array}$	$6,131,753 \quad 1$-reformed $6,131,753$ total reformed	
$m=8$	7016 1 - reformed 7016 total reformed	$436,816,134$ $1-$ reformed $436,816,134$ total reformed	
$m=9$	55661 1 -reformed 55661 total reformed		
$m=10$	586,810 1-reformed 586, 810 total reformed		
$m=11$	7,340,841 1 -reformed 7,340, 841 total reformed		
$m=12$	114,616,993 1 -reformed 114,616,993 total reformed		
$m=13$	$\begin{array}{ll} 2,030,647,546 & 1-\text { reformed } \\ 2,030,647,546 & \text { total reformed } \\ \hline \end{array}$		

Table 20
Number of reformed decks satisfying (WC) at $(H L M)^{2} N$. For $s=4$, since the number of reformed decks grows very quickly, it is possible to find 2-reformed decks.

REFERENCES

[1] E. Berlekamp, J. Conway and R.K. Guy, Wiining Ways for your Mathematical Plays, vol. 4, A K Peters, Wellesley, 2004.
[2] A. Cayley, A problem in permutations, Quart. J. Pure Appl. Math. 1 (1857), 79.
[3] A. Cayley, On the game of Mousetrap, Quart. J. Pure Appl. Math. 15 (1878), 8 - 10.
[4] K. S. Chua, private communication.
[5] P.G. Doyle, C.M. Grinstead, J. Laurie Snell Frustration Solitaire, UMAP Journal, vol. 16, n. 2, 1995, pp. $137-145$.
[6] W. Feller, An introduction to Probability Theory and its applications, Wiley and Sons, New York, 1957.
[7] M. Fréchet, Les probabilités associées a un système d'événements compatibles et dépendants - Seconde partie: cas particuliers et applications, Hermann and C., Paris, 1943.
[8] R. K. Guy, Mousetrap, §E37 in Unsolved Problems in Number Theory, third edition, Springer-Verlag, New York, 2004, pp. 237 - 238.
[9] R. K. Guy and R. Nowakowski, Mousetrap, in D. Miklós, V.T. Sós and T. Szonyi, eds., Combinatorics, Paul Erdős is Eighty, vol. 1, János Bolyai Mathematical Society, Budapest, 1993, pp. 193 - 206.
[10] R. K. Guy and R. Nowakowski, Unsolved Problems - Mousetrap, Amer. Math. Monthly 101 (1994), 1007-1008.
[11] R. K. Guy and R. Nowakowski, Monthly Unsolved Problems, 1969 - 1995, Amer. Math. Monthly 102 (1995), 921 - 926.
[12] D. J. Mundfrom, A problem in permutations: the game of Mousetrap, European J. Combin. 15 (1994), $555-560$.
[13] A. Pompili, Il metodo MONTE CARLO per l'analisi di un solitario, http://xoomer.virgilio.it/vdepetr/Art/Text22.htm.
[14] J. Riordan, An introduction to Combinatorial Analysis, Princeton Univ. Press, Princeton, 1980.
[15] N. J. A. Sloane, A Handbook of integer sequences, Academic Press, San Diego, 1973.
[16] N. J. A. Sloane, S. Plouffe, The encyclopedia of integer sequences, Academic Press, San Diego, 1995.
[17] N. J. A. Sloane, The On-Line Encyclopaedia of Integer Sequences, http://www.research.att.com/~njas/sequences/.
[18] M. Z. Spivey, Staircase Rook Polynomials and Cayley's Game of Mousetrap, accepted for publication on European J. Combin.
[19] A. Steen, Some formulae respecting the Game of Mousetrap, Quart. J. Pure Appl. Math. 15 (1878), $230-241$.
[20] A. Wuensche, Discrete Dynamical Networks and their Attractor Basins, Complexity International 6 (1998).

