Vectorial Ingham-Beurling type estimates

Vilmos Komornik
Département de mathématique
Université de Strasbourg
7 rue René Descartes
67084 Strasbourg Cedex, France
E-mail: komornik@math.unistra.fr

Abstract

We discuss a vectorial variant of Ingham's and Beurling's classical therems.

1 Introduction

We consider the coupled string-beam system

$$
\left\{\begin{array}{l}
u_{t t}-u_{x x}+a u+b w=0 \\
w_{t t}+w_{x x x x}+c u+d w=0
\end{array}\right.
$$

with usual initial conditions and with Dirichlet-hinged boundary conditions on a bounded interval ($0, \ell$), where a, b, c, d are given coupling constants.

Given $T>0$, we investigate the validity of the estimates

$$
c_{1} E(0) \leq \int_{0}^{T}\left|u_{x}(t, 0)\right|^{2}+\left|w_{x}(t, 0)\right|^{2} d t \leq c_{2} E(0)
$$

with suitable positive constants c_{1}, c_{2} where $E(0)$ denotes the usual initial energy $\left(\mathcal{H}=H_{0}^{1} \times L^{2} \times H_{0}^{1} \times H^{-1}\right)$.

Following [9] we may write these estimates in the abstract form

$$
c_{1} \sum_{k \in \mathbb{Z}}\left|x_{k}\right|^{2} \leq \int_{0}^{T}|x(t)|^{2} d t \leq c_{2} \sum_{k \in \mathbb{Z}}\left|x_{k}\right|^{2}
$$

where

$$
x(t):=\left(u, u_{t}, w, w_{t}\right)(t)=\sum_{k \in \mathbb{Z}} x_{k} U_{k} e^{i \omega_{k} t}
$$

with square-summable complex coefficients x_{k}. Here $\left(U_{k}\right)$ is a given sequence of unit vectors in \mathbb{C}^{4} and $\left(\omega_{k}\right)$ is a given sequence of real numbers, depending on the parameters of the problem (eigenvector traces and eigenvalues).

2 Statement of the results

We make the following assumptions:
(i) Let $\Omega:=\left(\omega_{k}\right)_{k \in \mathbb{Z}}$ be a family of real numbers satisfying the gap condition

$$
\gamma:=\inf _{k \neq n}\left|\omega_{k}-\omega_{n}\right|>0
$$

(ii) Let $\left(U_{k}\right)_{k \in \mathbb{Z}}$ be a corresponding family of unit vectors in some finite-dimensional complex Hilbert space H and consider the sums

$$
x(t)=\sum_{k \in \mathbb{Z}} x_{k} U_{k} e^{i \omega_{k} t}
$$

with square summable complex coefficients x_{k}.
(iii) By the gap condition Ω has a finite upper density defined by

$$
D^{+}=D^{+}(\Omega):=\lim _{r \rightarrow \infty} n^{+}(r) / r
$$

where $n^{+}(r)$ denotes the maximum number of terms ω_{k} contained in an interval of length r. We have $D^{+} \leq 1 / \gamma$.

We are going to discuss the followign theorem obtained in [3] in collaboration with A. Barhoumi and M. Mehrenberger:

Theorem 2.1

(a) If $T>2 \pi D^{+}$, then the estimates

$$
c_{1} \sum_{k \in \mathbb{Z}}\left|x_{k}\right|^{2} \leq \int_{0}^{T}\|x(t)\|_{H}^{2} d t \leq c_{2} \sum_{k \in \mathbb{Z}}\left|x_{k}\right|^{2}
$$

hold with suitable $c_{1}, c_{2}>0$.
(b) Conversely, if the above estimates hold true and $\operatorname{dim} H=d$, then $T \geq$ $2 \pi D^{+} / d$.

Let us discuss this result.

Remark First we consider the scalar case $d=1$. In this case the critical length is $T=2 \pi D^{+}$and our result reduces to a theorem of Beurling [4].
(i) For $\omega_{k}=k$ we have $D^{+}=1$ and the critical length is 2π in correspondence with Parseval's equality:

$$
\int_{0}^{2 \pi}\left|\sum_{k \in \mathbb{Z}} x_{k} e^{i k t}\right|^{2} d t=2 \pi \sum_{k \in \mathbb{Z}}\left|x_{k}\right|^{2}
$$

(ii) For $\omega_{k}=k^{3}$ we have $D^{+}=0$, so that

$$
c_{1} \sum_{k \in \mathbb{Z}}\left|x_{k}\right|^{2} \leq \int_{0}^{T}|x(t)|^{2} d t \leq c_{2} \sum_{k \in \mathbb{Z}}\left|x_{k}\right|^{2}
$$

for any $T>0$ (the constants $c_{1}, c_{2}>0$ depend on $\left.T\right)$.
(iii) Ingham's earlier sufficient condition ensured the preceding estimates for $T>$ $2 \pi / \gamma=2 \pi$. (We recall that $D^{+} \leq 1 / \gamma$.)

Remark Next we give higher-dimensional examples.
(i) If the vectors U_{k} are identical, then the critical length is $2 \pi D^{+}$like in the one-dimensional case.
(ii) If $d>1,\left(U_{k}\right)$ is d-periodical and U_{1}, \ldots, U_{d} is an orthonormal basis of H, then the critical length is $T=2 \pi D^{+} / d$. Indeed,

$$
\int_{0}^{T}\left|\sum_{k \in \mathbb{Z}} x_{k} U_{k} e^{i \omega_{k} t}\right|_{H}^{2} d t=\sum_{j=1}^{d} \int_{0}^{T}\left|\sum_{k \in \mathbb{Z}} x_{k d+j} e^{i \omega_{k d+j} t}\right|^{2} d t
$$

and we may apply the scalar case to each sum on the right side.
(iii) We show later that the critical length can be anything between $2 \pi D^{+} / d$ and $2 \pi D^{+}$.

In what follows we explain the proof of Theorem 2.1. It is based on our previous works in collaboration with C. Baiocchi and P. Loreti [1], [2].

3 Sufficiency of the condition $T>2 \pi D^{+}$

We begin with the scalat case. We recall Ingham's following classical theorem [7]:

Theorem 3.1

If

$$
\gamma:=\inf _{k \neq n}\left|\omega_{k}-\omega_{n}\right|>0
$$

and $T>2 \pi / \gamma$, then we have

$$
c_{1} \sum_{k \in \mathbb{Z}}\left|x_{k}\right|^{2} \leq \int_{0}^{T}\left|\sum_{k \in \mathbb{Z}} x_{k} e^{i \omega_{k} t}\right|^{2} d t \leq c_{2} \sum_{k \in \mathbb{Z}}\left|x_{k}\right|^{2}
$$

Idea of the proof. By introducing suitable orthogonalizing weight functions we imitate the proof of Parseval's equality.

There are infinitely many suitable weight functions but only a very particular choice yields the theorem under the condition $T>2 \pi / \gamma$. During the extension of Ingham's theorem to higher dimension, this optimal weight function turned to be intimately related to the first eigenfunction of the Laplacian operator in a ball; see [1] or [9].

Ingham's condition $T>2 \pi / \gamma$ was weakened in [2] as follows:

Theorem 3.2

If $\Omega_{1} \cup \cdots \cup \Omega_{M}$ be a finite partition of $\Omega=\left\{\omega_{k}\right\}$ and

$$
T>\frac{2 \pi}{\gamma\left(\Omega_{1}\right)}+\cdots+\frac{2 \pi}{\gamma\left(\Omega_{M}\right)}
$$

then we have

$$
\begin{equation*}
c_{1} \sum_{k \in \mathbb{Z}}\left|x_{k}\right|^{2} \leq \int_{0}^{T}\left|\sum_{k \in \mathbb{Z}} x_{k} e^{i \omega_{k} t}\right|^{2} d t \leq c_{2} \sum_{k \in \mathbb{Z}}\left|x_{k}\right|^{2} \tag{3.1}
\end{equation*}
$$

We note that for $M=1$ this reduces to Ingham's theorem.
Idea of the proof. We combine a Fourier transform method of Kahane [8], by replacing an implicit estimate by a constructive one, based on a constructive method of Haraux [6].

Example 3.3:

For $\omega_{k}=k^{3}$ and $\Omega_{j}:=\left\{\omega_{k M+j}: k \in \mathbb{Z}\right\}, j=1, \ldots, M$ we have $\gamma=1$ but

$$
\frac{2 \pi}{\gamma\left(\Omega_{1}\right)}+\cdots+\frac{2 \pi}{\gamma\left(\Omega_{M}\right)} \leq M \frac{2 \pi}{M^{3} / 4} \rightarrow 0, \quad M \rightarrow \infty
$$

Hence in this case the estimates (3.1) hold for all $T>0$ instead of Ingham's assumption

The upper density is related to the partitions via the following result proved in [2]:

Proposition 3.4

For every $T>2 \pi D^{+}$there exists a finite partition of Ω such that

$$
\frac{2 \pi}{\gamma\left(\Omega_{1}\right)}+\cdots+\frac{2 \pi}{\gamma\left(\Omega_{M}\right)}<T
$$

Proof. We choose $\gamma^{\prime}>0$ such that $T>\frac{2 \pi}{\gamma^{\prime}}>2 \pi D^{+}$, and then a large integer M such that $\frac{2 \pi}{\gamma^{\prime}}>2 \pi \frac{n^{+}\left(M \gamma^{\prime}\right)}{M \gamma^{\prime}}$, i.e., $n^{+}\left(M \gamma^{\prime}\right)<M$.

Arranging the exponents into an increasing sequence $\left(\omega_{k}\right)_{k \in K}$ we have $\omega_{k+M}-$ $\omega_{k}>M \gamma^{\prime}$ for all k, so that the sets $\Omega_{j}:=\left\{\omega_{M k+j}: k \in K\right\}$ satisfy

$$
\sum_{j=1}^{M} \frac{2 \pi}{\gamma\left(\Omega_{j}\right)} \leq \sum_{j=1}^{M} \frac{2 \pi}{M \gamma^{\prime}}=\frac{2 \pi}{\gamma^{\prime}}<T
$$

The sufficiency of assumption $T>2 \pi D^{+}$in the vectorial case follows from the scalar case. Indeed, we fix an orthonormal basis $\left(E_{n}\right)_{n \in N}$ of H and we develop each U_{k} into Fourier series:

$$
U_{k}=\sum_{n \in N} u_{k n} E_{n}
$$

If $T>2 \pi D^{+}$, then using the scalar case we have

$$
\begin{aligned}
\int_{0}^{T}\left\|\sum_{k \in \mathbb{Z}} x_{k} U_{k} e^{i \omega_{k} t}\right\|_{H}^{2} d t & =\sum_{n \in N} \int_{0}^{T}\left|\sum_{k \in \mathbb{Z}} x_{k} u_{k n} e^{i \omega_{k} t}\right|^{2} d t \\
& \asymp \sum_{n \in N} \sum_{k \in \mathbb{Z}}\left|x_{k} u_{k n}\right|^{2} \\
& =\sum_{k \in \mathbb{Z}}\left|x_{k}\right|^{2}
\end{aligned}
$$

with \asymp meaning equivalence in the sense of (3.1).

4 Necessity of the condition $T \geq 2 \pi D^{+} / d$

We may assume by scaling that

$$
\int_{0}^{2 \pi}\left|\sum_{k \in \mathbb{Z}} x_{k} U_{k} e^{i \omega_{k} t}\right|^{2} d t \asymp \sum_{k \in \mathbb{Z}}\left|x_{k}\right|^{2}
$$

We need to show that $D^{+} \leq d$. Following Mehrenberger [10] we adapt a method of Gröchenig and Razafinjatovo.

Step 1. Fix $R>0, y \in \mathbb{R}, r>0$ and set

$$
\begin{aligned}
& V=V_{y, r}:=\operatorname{Vect}\left\{U_{k} e^{i \omega_{k} t}:\left|\omega_{k}-y\right|<r\right\} \\
& W=W_{y, r+R}:=\operatorname{Vect}\left\{U e^{i k t}: U \in H,|k-y|<r+R\right\}
\end{aligned}
$$

Note that

$$
n^{+}(2 r)=\sup _{y} \operatorname{dim} V \quad \text { and } \quad \operatorname{dim} W \leq(2 r+2 R) d
$$

We will prove that

$$
\operatorname{dim} V \leq\left(1+o_{R}(1)\right) \operatorname{dim} W \quad \text { as } \quad R \rightarrow \infty
$$

This will imply that

$$
n^{+}(2 r)=\sup _{y} \operatorname{dim} V \leq(2 r+2 R) d\left(1+o_{R}(1)\right)
$$

and hence that

$$
D^{+}=\lim _{r \rightarrow \infty} \frac{n^{+}(2 r)}{2 r} \leq d\left(1+o_{R}(1)\right)
$$

for all $R>0$. Letting $R \rightarrow \infty$ this yields $D^{+} \leq d$.
Step 2. Let P, Q be the orthogonal projections of $L^{2}(0,2 \pi ; H)$ onto V and W. Then

$$
S:=\left.P \circ Q\right|_{V} \in L(V, V)
$$

has norm ≤ 1 and rank $\leq \operatorname{dim} W$, so that

$$
\operatorname{tr} S \leq \operatorname{dim} W
$$

Hence the estimate $\operatorname{dim} V \leq\left(1+o_{R}(1)\right) \operatorname{dim} W$ will follow if we prove that

$$
\operatorname{tr} S \geq\left(1-o_{R}(1)\right) \operatorname{dim} V
$$

Step 3. Let $\left(f_{k}\right)$ be a bounded biorthogonal sequence to $e_{k}:=U_{k} e^{i \omega_{k} t}$ in $L^{2}(0,2 \pi ; H)$. Since

$$
\operatorname{tr} S=\sum_{\left|\omega_{k}-y\right|<r}\left(S e_{k}, f_{k}\right)_{L^{2}(0,2 \pi ; H)}=\sum_{\left|\omega_{k}-y\right|<r}\left(Q e_{k}, P f_{k}\right)_{L^{2}(0,2 \pi ; H)}
$$

we have

$$
\begin{aligned}
\operatorname{dim} V-\operatorname{tr} S & =-\sum_{\left|\omega_{k}-y\right|<r}\left((Q-I) e_{k}, P f_{k}\right)_{L^{2}(0,2 \pi ; H)} \\
& \leq\left(\sup \left\|f_{k}\right\|\right)(\operatorname{dim} V) \sup _{\left|\omega_{k}-y\right|<r}\left\|(Q-I) e_{k}\right\|_{L^{2}(0,2 \pi ; H)} \\
& =o_{R}(1) \operatorname{dim} V
\end{aligned}
$$

by a direct computation, where we have assumed for a moment that

$$
\begin{equation*}
\left\|(Q-I) e_{k}\right\|_{L^{2}(0,2 \pi ; H)}=o_{R}(1) \tag{4.2}
\end{equation*}
$$

Under this assumption we have thus proved the required estimate $\operatorname{tr} S \geq(1-$ $\left.o_{R}(1)\right) \operatorname{dim} V$.

Step 4. For the proof of (4.2) first have, using the Fourier expansion

$$
e_{k}=\frac{1}{2 \pi} \sum_{n \in \mathbb{Z}} \sum_{j=1}^{d}\left(e_{k}, E_{j} e^{i n t}\right) E_{j} e^{i n t}
$$

where $\left(E_{j}\right)$ is an orthonormal basis of H, the following estimates:

$$
\begin{aligned}
\left\|(Q-I) e_{k}\right\|_{L^{2}(0,2 \pi ; H)}^{2} & =\frac{1}{2 \pi} \sum_{|n-y| \geq r+R} \sum_{j=1}^{d} \int_{0}^{2 \pi}\left|\left(e_{k}, E_{j} e^{i n t}\right)\right|^{2} d t \\
& =\frac{1}{2 \pi} \sum_{|n-y| \geq r+R} \sum_{j=1}^{d}\left|\left(e_{k}, E_{j}\right)\right|^{2}\left|\int_{0}^{2 \pi} e^{i\left(\omega_{k}-n\right) t} d t\right|^{2} \\
& \leq \frac{2 d}{\pi} \sum_{|n-y| \geq r+R} \frac{1}{\left|\omega_{k}-n\right|^{2}} .
\end{aligned}
$$

Now, since $|n-y| \geq r+R$ and $\left|\omega_{k}-y\right|<r$ imply $\left|n-\omega_{k}\right|>R$, it follows that

$$
\begin{aligned}
\left\|(Q-I) e_{k}\right\|_{L^{2}(0,2 \pi ; H)}^{2} & \leq \frac{2 d}{\pi} \sum_{|n-y| \geq r+R} \frac{1}{\left|\omega_{k}-n\right|^{2}} \\
& \leq \frac{4 d}{\pi} \sum_{n=0}^{\infty} \frac{1}{(R+n)^{2}} \\
& \leq \frac{4 d}{\pi}\left(\frac{1}{R^{2}}+\int_{R}^{\infty} \frac{1}{x^{2}} d x\right) \\
& =\frac{4 d}{\pi R^{2}}+\frac{4 d}{\pi R}
\end{aligned}
$$

This implies (4.2) and the proof of the theorem is completed.

5 Partitions and upper density

In order to show that the critical value of T may be anything between $2 \pi D^{+} / d$ and $2 \pi D^{+}$, we use the following combinatorial result obtained in [3]:

Theorem 5.1

Let Ω be a set of real numbers with a finite upper density D^{+}and let $\alpha_{1}, \alpha_{2}, \ldots$ be a finite or infinite sequence of numbers in $[0,1]$ satisfying

$$
\alpha_{1}+\alpha_{2}+\cdots \geq 1
$$

Then there exists a partition

$$
\Omega=\Omega_{1} \cup \Omega_{2} \cup \cdots
$$

such that the upper density of Ω_{j} is equal to $\alpha_{j} D^{+}$for every j.
Now, given $1 / d \leq \alpha \leq 1$ arbitrarily we choose $\alpha_{1}, \ldots, \alpha_{d} \geq 0$ such that

$$
\alpha_{1}+\cdots+\alpha_{d}=1 \quad \text { and } \quad \max \left\{\alpha_{1}, \ldots, \alpha_{d}\right\}=\alpha
$$

Applying the above theorem we obtain a partition $\Omega=\Omega_{1} \cup \cdots \cup \Omega_{d}$ such that $D^{+}\left(\Omega_{j}\right)=\alpha_{j} D^{+}$for all j. Fix an orthonormal basis E_{1}, \ldots, E_{d} of H and set $U_{k}=E_{j}$ if $\omega_{k} \in \Omega_{j}$. Then using the identity

$$
\int_{0}^{T}\left\|\sum_{k \in \mathbb{Z}} x_{k} U_{k} e^{i \omega_{k} t}\right\|_{H}^{2} d t=\sum_{j=1}^{d} \int_{0}^{T}\left|\sum_{\omega_{k} \in \Omega_{j}} x_{k} e^{i \omega_{k} t}\right|^{2} d t
$$

and applying the scalar case of the theorem we conclude that the required estimates hold if $T>2 \pi \alpha D^{+}$, and they fail if $T<2 \pi \alpha D^{+}$.

References

[1] C. Baiocchi, V. Komornik, P. Loreti, Ingham type theorems and applications to control theory, Bol. Un. Mat. Ital. B (8) 2 (1999), no. 1, 33-63.
[2] C. Baiocchi, V. Komornik, P. Loreti, Ingham-Beurling type theorems with weakened gap conditions, Acta Math. Hungar. 97 (1-2) (2002), 55-95.
[3] A. Barhoumi, V. Komornik, M. Mehrenberger, A vectorial Ingham-Beurling theorem, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., to appear.
[4] J.N.J.W.L. Carleson, P. Malliavin (editors), The Collected Works of Arne Beurling, Volume 2, Birkhäuser, 1989.
[5] K. Gröchenig, H. Razafinjatovo, On Landau's necessary conditions for sampling and interpolation of band-limited functions, J. London Math. Soc. (2), 54 (1996), 557-565.
[6] A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire, J. Math. Pures Appl. 68 (1989), 457-465.
[7] A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series, Math. Z. 41 (1936), 367-379.
[8] J.-P. Kahane, Pseudo-périodicité et séries de Fourier lacunaires, Ann. Sci. de l'E.N.S. 79 (1962), 93-150.
[9] V. Komornik, P. Loreti, Fourier Series in Control Theory, Springer-Verlag, New York, 2005.
[10] M. Mehrenberger, Critical length for a Beurling type theorem, Bol. Un. Mat. Ital. B (8), 8-B (2005), 251-258.

The author thanks the organizers for their kind invitation to this Conference.

