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Abstract

Via Carleman estimates we can prove uniqueness and continuous de-
pendence results for solutions to overdetermined ill-posed linear integro-
differential parabolic problems. Similar results can be proved for ill-posed
linear differential parabolic problems with deviating arguments. The overde-
termination is prescribed either in an open subset of the (geometric) domain
or on an open subset of its boundary.

1 Introduction

Severely ill-posed problems for PDE’s are well-known and studied as for unique-
ness and continuous dependence on the data. Each mathematician working with
PDE’s perfectly knows that the Cauchy problem for elliptic equations, the spa-
tial boundary (not the initial-boundary) problem for hyperbolic equations and the
backward initial-boundary problem for parabolic equations are ill-posed, i.e. the
contradict Hadamard’s celebrated definition of a well-posed problem that greatly
affected the Mathematics of the first half of the twentieth century.
On the contrary, in the second half of the last century a lot of interest, due to
the rushing on of Technology, was devoted to Inverse Problems, a branch of which
consists just of severely ill-posed problems, where severely means that no trans-
formation can be found in order to change such problems to well-posed ones, at
least, say, when working in classical or Sobolev function spaces of finite order.
Of course, in this situation lesser interest was devoted to severely ill-posed inte-
grodifferential problems or to differential problem with deviating arguments.
This paper is just devoted to shed some light on such problems, mainly on the
questions of uniqueness and continuous dependence on the data, two fundamental
topics for people working in Applied Mathematics.
More exactly we will deal here with four parabolic problems, three of them being
integrodifferential, the remaining being differential, but with deviating arguments.
In both problems no initial condition will be supplied. It will be replaced by
the requirement that the “temperature” u should either assume: (i) prescribed
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values u(t, x) = u0(t, x) for all (t, x) ∈ (0, T ) × ω ω being a subdomain of the
spatial domain Ω where the parabolic equation is assigned. or (ii) should satisfy
prescribed Cauchy conditions on the lateral boundary of Ω, Problems of this type
seem, to the author’s knowledge, not to have been yet studied, but in [20] and [21].
More exactly, in [20] the case (i) is studied for both an integrodifferential equation
and a differential equation, but with deviating arguments. Instead, in [21] the
case (ii) is analyzed for several integrodifferential problems and two differential
equations with deviating arguments. The motivation of these papers is to collect
some information about the general problem stated in Subsection 1.3 of this paper.
The main task of this paper consists in finding out estimates in L2 for the traces
u(t0, ·), t0 ∈ (0, T ], of our solution in terms of suitable norms of the data as well as
in showing that the unique continuation property holds for our ill-posed problem
(cf. Remark 2.2 in Subsection 2.2). As far as unique continuation for PDE’s is
concerned, we quote the papers [1], [5], [10], [11], [12], [13], [17], [23], [24], [25].
The fundamental tool to give some positive answer to our problem will be deduced
by adapting to our case Carleman’s celebrated estimates for PDE’s - of use both
in Control and Inverse Problem Theory -.

1.1 Plan of the paper

Section 1 is devoted to exhibiting general parabolic integrodifferential ill-posed
problems with an additional condition on a open subset of Ω and showing the
related (admissible) linear integral operators. Most of them are, at present, open
problems. Section 2 is concerned with the unique extension property and the
solvability - i.e. with uniqueness and continuous dependence on the data - of
one of such problems via Carleman estimates related to the associated differential
operator. Section 3 deals with similar questions for a differential equation with
deviating arguments. Sections 4 and 5 are devoted to integrodifferential ill-posed
problems when the Cauchy condition is given on a part of the lateral boundary.
They are concerned with the same questions as above.

1.2 A second-order linear operator

Let ω and Ω be two bounded open sets in Rn such that ω ⊂⊂ Ω, when needed ∂ω
and ∂Ω being of Cl-class, with suitable l. Let A(x, D) be the (formal) uniformly
elliptic linear operator, with principal part in divergence form, defined by

A(x, D) =
n∑

i,j=1

Dxi[ai,j(x)Dxj ] +
n∑

j=1

aj(x)Dxj + a0(x),

where

ai,j ∈ C1(Ω), i, j = 1, . . . , n, aj ∈ L∞(Ω), j = 0, . . . , n,

n∑

i,j=1

ai,j(x)ξiξj ≥ µ1|ξ|
n, x ∈ Ω, ξ ∈ R

n,
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for some positive constant µ1.

1.3 The general linear ill-posed problem

The question we are concerned with consists in solving a parabolic integrodiffer-
ential (or differential) problem when the initial condition is missing. To overcome
this big trouble - making our problem ill-posed - we need to have at our disposal at
least a suitable additional information. In this case our fundamental aim consists
in recovering, at least, the uniqueness of the solution and its continuous depen-
dence on the data in suitable metrics to be determined. To fix ideas, we will be
concerned with the problem of estimating the trace u(t0, ·), t0 ∈ (0, T ), of the
solution1 u : [0, T ]× Ω → R to the problem

(IP )






Dtu(t, x) − A(x, D)u(t, x)

= B0u(t, x) + Ku(t, x) + f(t, x), (t, x) ∈ (0, T )× Ω =: QT ,

u(t, x) = u0(t, x) + B1u(t, x), (t, x) ∈ (0, T )× ω,

u(t, x) = g(t, x) + B2u(t, x), (t, x) ∈ (0, T )× ∂Ω,

where f ∈ L2((0, T ) × Ω), u0 ∈ L2((0, T ) × ω), g ∈ L2((0, T ) × ∂Ω) and K, B0,
B1, B2 are linear operators with domain in L2(Ω) defined by

Ku(t, x) = k(t, x)u(t, ρx), ρ ∈ (0, 1),

B0u(t, x) =

∫

QT

k0,1(t, x, s, y)u(s, y) d(ν1(s) × ν2(y))

+

∫

Ω
k0,2(t, x, y)u(t, y) dν3(y),

Bju(t, x) =

∫

(0,T )×Γ
kj,1(t, x, s, y)u(s, y) dsdσ(y)

+

∫

Γ
kj,2(t, x, y)u(s, y) dσ(y), j = 1, 2,

Γ being an open subset in ∂Ω and νj , j = 1, 2, 3, standing for three positive
measures such that

ν1 ∈ {δt, m1}, t ∈ (0, T ), ν2, ν3 ∈ {δx, mn}, x ∈ Ω, (ν1, ν2) '= (δt, δx).

ν3 ∈ {δx, σ, mn},

Here δ, mk and σ denote, respectively, the Dirac measure, the k-dimensional
Lebesgue measure and the surface Lebesgue measure.

1in a sense to be made precise for each specific problem. Similarly the open set Ω will be
assumed to be convex with respect to 0, if needed.
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Remark Of course, Γ could be a (smooth) submanifold in ∂Ω, e.g., a curve in
∂Ω, when n = 3.

2 The first (interior) ill-posed problem

In this section we consider a particular case of problem (IP) 2. We assume that
B1 = B2 = O - O denoting the null-operator - so that our task consists in esti-
mating the trace u(t0, ·), t0 ∈ (0, T ), of the weak solution u : [0, T ]×Ω → R to the
problem

(IP1)






Dtu(t, x) − A(x, D)u(t, x),

= B(u)(t, x) + f(t, x), (t, x) ∈ (0, T )× Ω =: QT ,

u(t, x) = u0(t, x), (t, x) ∈ (0, T )× ω,

u(t, x) = g(t, x), (t, x) ∈ (0, T )× ∂Ω,

(2.1)

where f ∈ L2((0, T )×Ω), u0 ∈ H1((0, T ); L2(ω))∩L2((0, T ); H1(ω)), g ∈ H1/4,1/2((0, T )×
∂Ω) and B = B0 is the linear operator with domain in L2(Ω) defined by

Bu(t, x) =

∫

Ω
k0(t, x, y)u(t, y) dy, (t, x) ∈ (0, T )× ∂Ω. (2.2)

First of all we need to recall the Carleman estimates related to problem (2.1) when
B is dealt with as a perturbation of the differential operator Dt − A(x, D). For
this purpose, taking [16] into account, we know that it is possible to construct a
function

ψ ∈ C2(Ω), ψ(x) > 0, ∀x ∈ Ω, |∇ψ(x)| > 0, ∀x ∈ Ω \ ω. (2.3)

Introduce then the functions ϕβ,λ : [0, T ] × Ω → R+ and αβ,λ : [0, T ] × Ω → R−,
depending on the parameters β ∈ [2, +∞) and λ ∈ [1, +∞), defined by

ϕβ,λ(t, x) =
eλψ(x)

l(t)β
, αβ,λ(t, x) =

eλψ(x) − e2λ‖ψ‖∞

l(t)β
, (t, x) ∈ (0, T )× Ω, (2.4)

where ‖ · ‖∞ denotes the norm in L∞(Ω) and

l(t) = t(T − t).

Making use of the Carleman estimate in [16], related to the differential case B = O,
any weak solution u ∈ H1((0, T ); L2(Ω)) ∩ L2((0, T ); H1(Ω)) of (2.1) satisfies the

2For the missing computations and proofs the reader is referred to [20].
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following estimate: there exist λ0 > 0 and a positive constant C ≥ 1 such that for
any λ > λ0 there exists ŝ0 = ŝ0(λ) ≥ 1 such that

s

∫

QT

ϕβ,λ(t, x)|u(t, x)|2 exp [2sαβ,λ(t, x)] dtdx

+s−1

∫

QT

ϕβ,λ(t, x)−1|∇u(t, x)|2 exp [2sαβ,λ(t, x)] dtdx

≤ Cs−2

∫

QT

ϕβ,λ(t, x)−2|B(u)(t, x)|2 exp [2sαβ,λ(t, x)] dtdx

+Cs

∫

(0,T )×ω
ϕβ,λ(t, x)|u0(t, x)|2 exp [2sαβ,λ(t, x)] dtdx

+Cs−2

∫

QT

ϕβ,λ(t, x)−2|f(t, x)|2 exp [2sαβ,λ(t, x)] dtdx

+Cs−1/2‖ϕ−1/4
β,λ g exp(αβ,λ)‖H1/4,1/2((0,T )×∂Ω)

+Cs−1/2‖ϕ−1/4+1/β
β,λ g exp(αβ,λ)‖L2((0,T )×∂Ω), ∀s ≥ ŝ0. (2.5)

Our first task consists in determining sufficient conditions on the operator B en-
suring the estimate

∫

QT

ϕβ,λ(t, x)−2|B(u)(t, x)|2 exp [2sαβ,λ(t, x)] dtdx

≤ C0

∫

QT

ϕβ,λ(t, x)|u(t, x)|2 exp [2sαβ,λ(t, x)] dtdx

+ C1

∫

QT

ϕβ,λ(t, x)−1|∇u(t, x)|2 exp [2sαβ,λ(t, x)] dtdx, (2.6)

so that the term containing B(u) can be absorbed by the first two integrals in the
left-hand side in (2.5).
Since in our case u is known on the sub-cylinder (0, T ) × ω, we easily deduce the
following equality, where Ω̂ = Ω \ ω:

Bu(t, x) =

∫

bΩ
k0(t, x, y)u(t, y) dy +

∫

ω
k0(t, x, y)u0(t, y) dy

= BbΩu(t, x) + Bωu(t, x), (t, x) ∈ (0, T )× Ω. (2.7)

Remark We can now explain more clearly why our problem (IP) is severely ill-
posed, if we assume, for the sake of simplicity, that u0 ∈ H1((0, T ); L2(ω)) ∩
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L2((0, T ); H2(ω)). Indeed, problem (IP1) can be rewritten in the following form:

(IP1)






Dtu(t, x) − A(x, D)u(t, x)

= BbΩu(t, x) + f(t, x), (t, x) ∈ (0, T )× Ω̂,

u(t, x) = u0(t, x), Dnu(t, x) = Dnu0(t, x), (t, x) ∈ (0, T )× ∂ω,

u(t, x) = g(t, x), (t, x) ∈ (0, T )× ∂Ω,

where f(t, x) = f(t, x)+Bωu0(t, x). In this problem the initial condition is missing
and is replaced by the Cauchy condition on the inner surface (0, T ) × ∂ω of the
open cylinder (0, T ) × Ω̂. It is well-known that prescribing the Cauchy condition
on the surface (0, T )×∂ω makes problem (IP1) severely ill-posed. Concerning this
question see, e.g., the book [4] and the papers [3, 7, 8, 9, 15, 18].

Owing to formula (2.7), we can rewrite inequality (2.5) in the form

s

∫

QT

ϕβ,λ(t, x)|u(t, x)|2 exp [2sαβ,λ(t, x)] dtdx

+ s−1

∫

QT

ϕβ,λ(t, x)−1|∇u(t, x)|2 exp [2sαβ,λ(t, x)] dtdx

≤ Cs−2

∫

bQT

ϕβ,λ(t, x)−2|BbΩu(t, x)|2 exp [2sαβ,λ(t, x)] dtdx

+ Cs−2

∫

(0,T )×ω
ϕβ,λ(t, x)−2|Bωu0(t, x)|2 exp [2sαβ,λ(t, x)] dtdx

+ terms involving the data, ∀s ≥ ŝ0.

Finally, the kernel k0 has to be determined so as to satisfy condition (2.6).
First we assume that, for some γ ∈ R+, the kernel k0 satisfies

K0 := sup
(t,x)∈ bQT

l(t)γ

∫

bΩ
|k0(t, x, y)| dy < +∞. (2.8)

From (2.8) and the simple inequality
∫

bΩ
|k0(t, x, y)v(t, y)| dy ≤ K1/2

0 l(t)−γ
[ ∫

bΩ
|k0(t, x, y)||v(t, y)|2 dy

]1/2
,

we easily deduce the estimates
∫

bQT

ϕβ,λ(t, x)−2 exp [2sαβ,λ(t, x)]
∣∣∣
∫

bΩ
|k0(t, x, y)v(t, y)| dy

∣∣∣
2
dtdx

≤ K0

∫

bQT

ϕβ,λ(t, y)−1|v(t, y)|2 dtdy

∫

bΩ
h0,β,s,λ(t, x, σ, y)|k0(t, x, σ, y)| dx, (2.9)
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where the kernel h0,β,s,λ is defined by

h0,β,s,λ(t, x, y) = l(t)−γϕβ,λ(t, x)−2ϕβ,λ(t, y)−1 exp {2s[αβ,λ(t, x) − αβ,λ(t, y)]}.

Assume now that kernel k0 satisfies the additional condition

sup
(s,t,y)∈[1,+∞)× bQT

∫

bΩ
h0,β,s,λ(t, x, y)|k0(t, x, y)| dy =: K1 < +∞. (2.10)

Under conditions (2.10), from (2.8), (2.9) we easily deduce the desired estimate
∫

bQT

ϕβ,λ(t, x)−2|Bu(t, x)|2 exp [2sαβ,λ(t, x)] dtdx

≤ K0K1

∫

bQT

ϕβ,λ(t, x)|u(t, x)|2 exp [2sαβ,λ(t, x)] dtdx. (2.11)

We try now to simplify conditions (2.10). For this task first we note that

αβ,λ(t, x) − αβ,λ(t, y) = l(t)−β{exp [λψ(x)] − exp [λψ(y)]} ≤ 0 ⇐⇒ ψ(x) ≤ ψ(y).

Consequently,

0 < t < T, x ∈ Ω, y ∈ Ω̂, ψ(x) ≤ ψ(y) =⇒

h0,β,s,λ(t, x, y) ≤ l(t)3β−γ exp {−λ[2ψ(x) + ψ(y)]}.

Whence we deduce
∫

{x∈Ω: ψ(x)≤ψ(y)}
h0,β,s,λ(t, x, y)|k0(t, x, y)| dx ≤ l(t)3β−γ

∫

bΩ
|k0(t, x, y)| dx.

Let now assume

k0 = 0 on E0,T = {(t, x, y) ∈ (0, T ) × Ω × Ω̂ : ψ(y) > ψ(x)}, (2.12)

This implies the following representation for B:

Bu(t, x) =

∫

bΩψ(x)
k0(t, x, y)u(t, y) dy, (2.13)

where

Ω̂ψ(x) = {y ∈ Ω̂ : ψ(y) ≤ ψ(x)}, x ∈ Ω.

Therefore, we can conclude that, under condition (2.8), inequality (2.10) is fulfilled,
if kernel k0 satisfies the following inequality for some pair (β, λ) ∈ [2, +∞) ×
[1, +∞) and a positive constant K1:

∫

Ω
|k0(t, x, y)| dx ≤ K1l(t)

γ−3β, (t, y) ∈ Q̂T . (2.14)
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Choose now s to be a solution to the inequalities

Cs−2K0K1 ≤
1

2
s ⇐⇒ s ≥ max{2CK0K1, ŝ0} =: s0.

Therefore, owing to (2.7), the term containing Bu can be absorbed from the first
integral in the left-hand side in (2.5). Then from (2.5) and (2.11) we deduce

1

2
s

∫

QT

ϕβ,λ(t, x)|u(t, x)|2 exp [2sαβ,λ(t, x)] dtdx

+
1

2
s−1

∫

QT

ϕβ,λ(t, x)−1|∇u(t, x)|2 exp [2sαβ,λ(t, x)] dtdx

≤ Cs−2

∫

(0,T )×ω
ϕβ,λ(t, x)−2|Bωu0(t, x)|2 exp [2sαβ,λ(t, x)] dtdx

+ s

∫

(0,T )×ω
ϕβ,λ(t, x)|u0(t, x)|2 exp [2sαβ,λ(t, x)] dtdx

+ Cs−2

∫

QT

ϕβ,λ(t, x)−2|f(t, x)|2 exp [2sαβ,λ(t, x)] dtdx

+ Cs−1/2‖ϕ−1/4
β,λ g exp(αβ,λ)‖H1/4,1/2((0,T )×∂Ω)

+ Cs−1/2‖ϕ−1/4+1/β
β,λ g exp(αβ,λ)‖L2((0,T )×∂Ω) =: J1(s, u0, f, g), s ≥ s0. (2.15)

We collect the result of this subsection in the following theorem

Theorem 2.2 Let the kernels k0 satisfy conditions (2.8), (2.12), (2.14). Then
the weak solution u to problem (IP) satisfy the Carleman estimate (2.15).

2.1 A continuous dependence result

Using the techniques developed in [6] we can estimate the trace u(t0, ·) in L2(Ω)
for all t0 ∈ (0, T ]. More precisely, we can estimate u in C((0, T ]; L2(Ω)). For this
purpose, we have to introduce in some way the missing initial condition at t = 0.
This can can be done by the aid of the auxiliary function

vε = σε(u − g),

where g denotes now a fixed extension of the previous g to H1((0, T ); L2(Ω)) ∩
L2((0, T ); H1(Ω)). Moreover, {σε}ε∈(0,1/4) is a family of functions in W 1,∞((0, T );
[0, 1]) defined by

σε(t) = 0, t ∈ [0, εT ], σε(t) = 1, t ∈ [2εT, T ].
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First we need the following lower and upper bounds for functions ϕβ,λ and
αβ,λ:

l(t)−β ≤ ϕβ,λ(t, x) ≤ eλ‖ψ‖∞ l(t)−β ,

−[e2λ‖ψ‖∞ − eλψm ]l(t)−β ≤ αβ,λ(t, x) ≤ −[e2λ‖ψ‖∞ − eλ‖ψ‖∞ ]l(t)−β ,

where (t, x) ∈ QT and ψm = minx∈Ω ψ(x).
Observe now that, for s ∈ [s0, 2s0] and (t, x) ∈ QT , we have

ρ1,λ(t) := exp
{
− 4s0[e

2λ‖ψ‖∞ − eλψm ]l(t)−β
}
≤ exp

[
2sαβ,λ(t, x)

]

≤ exp
{
− 2s0

[
e2λ‖ψ‖∞ − eλ‖ψ‖∞

]
l(t)−β

}
=: ρ2,λ(t). (2.16)

Consequently, from (2.15)-(2.16), with s ∈ [s0, 2s0], we easily deduce the estimate

max
{1

2
s0,

e−λ‖ψ‖∞

4s0

}∫ T

0

[
l(t)−β‖u(t, ·)‖2

L2(Ω) + l(t)β‖∇u(t, ·)‖2
L2(Ω)

]
ρ1,λ(t) dt

≤ C

∫ T

0
l(t)−βρ2,λ(t)‖u0(t, ·)‖

2
L2(ω) dt

+ C

∫ T

0
ρ2,λ(t)

[
s−2
0 l(t)−2β‖f0(t, ·)‖

2
L2(Ω) +

n∑

j=1

‖f(t, ·)‖2
L2(Ω)

]
dt

+ C
[
‖l−1/4ρ2,λg‖H1/4,1/2((0,T )×∂Ω) + ‖l−1/4+1/βρ2,λg‖L2((0,T )×∂Ω)

]
. (2.17)

Since σε commutes with B, i.e. σε(t)Bu(t, x) = B(σεu)(t, x), it is a simple task
to show that vε solves the following initial and boundary-value problem:

(DP )






Dtvε(t, x) − A(x, D)vε(t, x) = Bvε(t, x) + σ′
ε(t)u(t, x)

+g̃ε(t, x) + fε(t, x), (t, x) ∈ (0, T )× Ω,

vε(0, x) = 0, x ∈ Ω,

vε(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω,

where

f0,ε = σεf0, gε = σεg, g̃ε = −Dtgε + A(·, D)gε + Bgε.

Recall now that −A(·, D) satisfies the following estimate for all v ∈ H1
0 (Ω):

−〈A(·, D)v, v〉 ≥ µ3‖∇v‖2
L2(Ω) − µ4‖v‖

2
L2(Ω),

for some positive constants µ3 and µ4.
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Using standard energy estimates and denoting by (·, ·) the usual inner product in
L2(Ω), we get 3

Dt‖vε(t, ·)‖
2
L2(Ω) + µ3‖∇vε(t, ·)‖

2
L2(Ω) − µ4‖vε(t, ·)‖

2
L2(Ω)

≤ (Bvε(t, ·), vε(t, ·)) + ‖vε(t, ·)‖L2(Ω)

{
‖σ′

ε(t)u(t, ·)‖L2(Ω)

+ ‖g̃ε(t, ·)‖L2(Ω) + ‖fε(t, ·)‖L2(Ω)

}
, (2.18)

Assume now that the kernels k0 satisfies also the inequality

H0 := sup
(t,y)∈ bQT

l(t)δ

∫

bΩ
|k0(t, x, y)| dx < +∞, (2.19)

where γ + δ < 2, Then it is well-known that the norm of BbΩvε(t·) in L2(Ω) can
be estimated by (H0K0)1/2l(t)−κ (cf., e.g., [19, Chapter 16]), κ = (γ + δ)/2.
Therefore, integrating both sides of estimate (2.18) over the interval (0, τ), τ ∈
(0, T ), we easily deduce the integral inequality:

‖vε(τ, ·)‖
2
L2(Ω) + µ3

∫ τ

0
‖∇vε(t, ·)‖

2
L2(Ω) dt

≤ J2(σ
′
ε)

∫ τ

0
l(t)−κ‖v(t, ·)‖2

L2(Ω) dt +

∫ τ

0
κε(t)‖vε(t, ·)‖L2(Ω) dt

+
1

2
‖σ′

ε‖L∞(0,T )

∫ 2εT

εT
‖u(t, ·)‖2

L2(Ω) dt. (2.20)

Here we have set

J2(σ
′
ε) =

[
µ4 +

1

2
‖σ′

ε‖L∞(0,T )

]
(T 2/4)κ + (H0K0)

1/2,

κε(t) = ‖g̃ε(t, ·)‖L2(Ω) + ‖fε(t, ·)‖L2(Ω),

and have used the inclusion suppσ′
ε ⊂ [εT, 2εT ].

Then, taking advantage of (2.15) and of the inequality

l(t)−βρ1,λ(t) ≥ C(ε, T ) > 0, t ∈ [εT, 2εT ],

we can estimate u in terms of the data
∫ 2εT

εT
‖u(t, ·)‖2

L2(Ω) dt ≤ C(ε, T )−1

∫ 2εT

εT
l(t)−βρ1,λ(t)‖u(t, ·)‖2

L2(Ω) dt

≤ C(ε, T )−1J1(u0, f, g). (2.21)

3For the missing computations and proofs the reader is referred to [20].
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Finally, from (2.20) and (2.21) we deduce the fundamental integrodifferential in-
equality

‖vε(τ, ·)‖
2
L2(Ω) ≤ J2(σ

′
ε)

∫ τ

0
l(t)−κ‖vε(t, ·)‖

2
L2(Ω) dt +

∫ τ

0
κε(t)‖vε(t, ·)‖L2(Ω) dt

+ J3(σ
′
ε, u0, f, g), τ ∈ (0, T ), (2.22)

where

J3(σ
′
ε, u0, f, g) = 2C(ε, T )−1‖σ′

ε‖L∞(0,T )J1(u0, f, g). (2.23)

Then we need a simple variant of Theorem 4.9 in [2], with p = 1/2, which we
report here as a lemma.

Lemma 2.2 Let z be a nonnegative C([0, T ])–function and let b, k be nonnegative
L1((0, T ))–functions satisfying

z(t) ≤ a +

∫ t

0
b(s)z(s) ds +

∫ t

0
k(s)z(s)p ds, t ∈ [0, T ],

where p ∈ (0, 1) and a ≥ 0 are given constants. Then for all t ∈ [0, T ]

z(t) ≤ exp

(∫ t

0
b(s) ds

)

×

[
a1−p + (1 − p)

∫ t

0
k(s) exp

(
(p − 1)

∫ s

0
b(σ) dσ

)
ds

]1/(1−p)

.

From this lemma and the integral inequality (2.22) we immediately deduce the
estimate

‖vε(τ, ·)‖L2(Ω) ≤ exp
[1

2
J2(σ

′
ε)

∫ τ

0
l(r)−κ

]{
J3(σ

′
ε, u0, f, g)1/2

+
1

2

∫ τ

0
exp

[
−

1

2
J2(σ

′
ε)

∫ s

0
l(r)−κ dr

]
κε(s) ds

}1/2
, τ ∈ [0, T ]. (2.24)

In particular, for all τ ∈ [2εT, T ] from (2.17) we find the desired estimate for u:

‖u(τ, ·)‖L2(Ω) ≤ ‖g(τ, ·)‖L2(Ω) + exp
[1

2
J2(σ

′
ε)

∫ τ

0
l(r)−κ dr

]{
J3(σ

′
ε, u0, f, g)1/2

+
1

2

∫ τ

0
exp

[
−

1

2
J2(σ

′
ε)

∫ s

0
l(r)−κ dr

]
κε(s) ds

}1/2
. (2.25)

Remark If u0 = 0, g = 0 and f = 0, then J3(σ′
ε, u0, f, , g) = 0 and κε = 0 so that

u = 0 in [2εT, T ] × Ω for all ε ∈ (0, 1/2). This implies u = 0 in (0, T ] × Ω. In
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particular, since u ∈ H1((0, T ); L2(Ω)) and H1((0, T ); L2(Ω)) ↪→ C([0, T ]; L2(Ω)),
we can conclude that u = 0 in QT , i.e. that a unique continuation property holds
true for the solution to problem (2.1.

Remark By virtue of (2.20), (2.21), (2.24) we can also estimate the spatial gra-
dient ∇u in L2((2εT, T )× Ω), ε ∈ (0, 1/4), in terms of the data.

Remark Assume that Ω is the ball B(0, r2) containing the smaller ball B(0, r1)
= ω, 0 < r1 < r2. Define ψ(x) = r2

2 − |x|2. Then function ψ satisfies all properties
in (2.5). Observe that condition

ψ(x) > ψ(x), x, y '= B(0, r1) ⇐⇒ |x| < |y|, x, y ∈ B(0, r1).

Therefore the condition to be imposed on the kernel k0 is

k0 = 0 on E0,T = {(t, x, y) ∈ (0, T )× Ω × Ω̂ : |x| < |y|}.

We conclude this subsection by stating the results so far proved.

Theorem 2.6 Let the kernel k0 satisfy conditions (2.8), (2.12), (2.14) and (2.19),
with γ, δ ∈ [0, 2) and γ+δ < 2. Then the weak solution u to problem (IP1) satisfy
the continuous dependence estimate (2.25).

3 The second ill-posed problem

We consider here the ill-posed problem (IP) 4, where Ω is convex with respect to
x = 0 and the linear operator K is defined by the formula

Ku(t, x) = k(t, x)u(t, ρx).

for some fixed ρ ∈ (0, 1) and a given function k ∈ L∞(QT ). Moreover, we assume
(1/ρ)ω ⊂⊂ Ω.
Since u = u0 in (0, T )×ω, we immediately deduce that u(t, ρx) = u0(t, ρx) if, and
only if, x ∈ (1/ρ)ω. Whence we derive

Ku(t, x) = k(t, x)u0(t, ρx)χ(1/ρ)ω(x) + k(t, x)u(t, ρx)χΩ\(1/ρ)ω(x)

= K0u(t, x) + K1u(t, x).

4For the missing computations and proofs the reader is referred to [20].

160



Assume that k satisfies, for all (t, x) ∈ (0, T )×(ρΩ) and s ∈ [1, +∞), the inequality

ϕβ,λ(t, ρ−1x)−1

ϕβ,λ(t, x)1/2
exp {s[αλ(t, ρ−1x) − αλ(t, x)]}|k(t, ρ−1x)| ≤ C0, (3.1)

for a suitable positive constant C0 to be determined later on.
By a simple change of variables we easily deduce the following estimates, where
we have set Q̂T,ρ = (0, T ) × [Ω \ (1/ρ)ω]:

∫

QT

ϕβ,λ(t, x)−2|Ku(t, x)|2 exp [2sαβ,λ(t, x)] dtdx

≤

∫

(0,T )×(1/ρ)ω
ϕβ,λ(t, x)−2|K0u0(t, x)|2 exp [2sαβ,λ(t, x)] dtdx

+

∫

bQT,ρ

ϕβ,λ(t, x)−2|K1u(t, x)|2 exp [2sαβ,λ(t, x)] dtdx. (3.2)

By standard computations we get
∫

bQT,ρ

ϕβ,λ(t, x)−2|K1u(t, x)|2 exp [2sαβ,λ(t, x)] dtdx

≤ C0ρ
−n

∫

QT

ϕβ,λ(t, x) exp [2sαλ(t, x)]|u(t, x)|2 dtdx

+ C1ρ
−n

∫

QT

ϕβ,λ(t, x)−1 exp [2sαλ(t, x)]|∇u(t, x)|2 dtdx.

Therefore the term containing K1u in (3.2) can be absorbed by the the first two
integrals in the left-hand side in (2.5), with B = K0 + K1, if we choose

s ≥ max
{
(CC0ρ

−n)1/3, CC1ρ
−n, ŝ0

}
=: s0.

To simplify condition (3.1) we note that

αβ,λ(t, ρ−1x) − αβ,λ(t, x) =
{

exp
[
λψ(ρ−1x)

]
− exp

[
λψ(x)

]}
l(t)−β

{
≤ 0, if ψ(x) ≥ ψ(ρ−1x),

> 0, if ψ(ρ−1x) > ψ(x),
(t, x) ∈ (0, T ) × (ρΩ \ ω).

Since exp{2s[αβ,λ(t, ρ−1x) − αβ,λ(t, x)]} → +∞ as s → +∞ if t ∈ (0, T ) and
ψ(ρ−1x) > ψ(x), we are forced to assume that k vanishes on (0, T ) × Ω(ψ, ρ),
where

Ω(ψ, ρ) = {y ∈ Ω \ (1/ρ)ω : ψ(y) > ψ(ρy)}. (3.3)

Further, observe that

ϕβ,λ(t, ρ−1x)−1

ϕβ,λ(t, x)1/2
= l(t)3β/2 exp {−λ[ψ(ρ−1x) + ψ(x)/2]} ≤ l(t)3β/2.
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So, from (3.2) we get the following inequalities for all (t, x) ∈ (0, T )× (ρΩ\ω) and
s ∈ [1, +∞):

ϕβ,λ(t, ρ−1x)−1

ϕβ,λ(t, x)1/2
exp {s[αλ(t, ρ−1x)] − αλ(t, x)}|k(t, ρ−1x)|

≤ l(t)3β/2 exp {λ[−ψ(ρ−1x) + ψ(x)/2]}|kl(t, ρ
−1x)|χρΩ(ψ,ρ)c (ρ−1x).

Consequently, from (3.3) we conclude that the function k satisfies (3.1), if it does
for all (t, x) ∈ (0, T ) × (ρΩ \ ω) and s ∈ [1, +∞):

|k(t, x)| ≤ C0l(t)
−3β/2χ(Ω(ψ, ρ)c), (3.4)

for some positive constant C0.
Summing up, we have proved the following result.

Theorem 3.1 Let k ∈ L∞(QT ) satisfy relation (3.4). Then Carleman estimate
(2.5) holds true for s ≥ ŝ0, when the third integral is replaced by

∫

bQT,ρ

ϕβ,λ(t, x)−2|K0u0(t, x)|2 exp [2sαβ,λ(t, x)] dtdx.

Then, proceeding as in Subsection 2.1, we can prove the following continuous
dependence result.

Theorem 3.2 Let k ∈ L∞(QT ) satisfy assumption (3.4). Then problem (IP)
admits at most one solution u continuously depending on the data. More explicitly,
for all τ ∈ [2εT, T ], ε ∈ (0, 1), the following estimate holds:

‖u(τ, ·)‖L2(Ω) ≤ ‖g(τ, ·)‖L2(Ω) + J3(σ
′
ε, u0, f, g)1/2 exp[J2(σ

′
ε)τ/2]

+

∫ τ

0
exp[J2(σ

′
ε)(τ − t)/2]

{
‖g̃(t, ·)‖L2(Ω) + ‖f(t, ·)‖L2(Ω)

}
dt,

where

g̃ = −Dtg + σ′
εg + A(·, D)g + Bg, J2(σ

′
ε) = µ1 + C(k) +

1

2
‖σ′

ε‖L∞(0,T ),

J3(σ
′
ε, u0, f, g) = 2C(ε, T )−1‖σ′

ε‖L∞(0,T )J1(u0, f, g),
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4 The first ill-posed problem with Cauchy
conditions on the lateral boundary

As in the previous sections for the problem we are dealing here no initial condition
will be supplied. It will be replaced by the requirement that the “temperature”
u should assume prescribed values on an open subsurface of the lateral boundary
(0, T )×Γ of (0, T )×∂Ω, while the flux of u should either assume prescribed values
on (0, T )×∂Ω or should satisfy there a linear integrodifferential equation. In other
terms, u is required to solve a Cauchy problem on (0, T ) × Γ as well as to satisfy
additional conditions on the remaining part of the lateral boundary.
We consider the ill-posed problem consisting in estimating the trace u(t0, ·), t0 ∈
(0, T ), of the solution u : [0, T ] × Ω → R to the linear integrodifferential parabolic
problem

(IP2)






u ∈ H1((0, T ); L2(Ω)) ∩ L2((0, T ); H2(Ω)),

Dtu(t, x) − A(x, D)u(t, x)

= Bu(t, x) + f(t, x), (t, x) ∈ (0, T )× Ω,

u(t, x) = g(t, x), (t, x) ∈ (0, T )× ∂Ω,

DνAu(t, x) = DνAg(t, x), (t, x) ∈ (0, T )× Γ,

(4.1)

where

Bu(t, x) =

∫

S
k(t, x, y)u(t, y) dσ(y). (4.2)

Here DνA denotes the conormal (outer) derivative related to the differential oper-
ator A(·, D) and Γ is an open subset in ∂Ω, while S is (open or closed) surface in
Rn, S ⊂ ∂ω \ Γ, where ω ⊂ Ω with ∂ω ∈ C1. Moreover, σ denotes the Lebesgue
surface measure and g ∈ H1((0, T ); L2(Ω)) ∩ L2((0, T ); H2(Ω)), while the kernel
k : (0, T )×Ω×S → R is measurable and, for the time being, separably integrable
with respect to x ∈ Ω and y ∈ S.
Introduce the function

v = u − g, (4.3)

where u is the solution to problem (4.1). It is a simply task to show that v solves
the following boundary-value problem:

(IP3)






v ∈ H1((0, T ); L2(Ω)) ∩ L2((0, T ); H2(Ω)),

Dtv(t, x) − A(x, D)v(t, x) = Bv(t, x) + f̃(t, x), (t, x) ∈ (0, T )× Ω,

v(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω,

DνAv(t, x) = 0, (t, x) ∈ (0, T )× Γ,

(4.4)

where

f̃ = f − Dtg + A(·, D)g + Bg. (4.5)

163



We need here the functions ϕλ and αλ defined by (2.4) with β = 1, where now
function ψ belongs to C4(Ω) and satisfies (cf. [14]) the properties

ψ(x) > 0, x ∈ Ω, |∇ψ(x)| ≥ µ2 > 0, x ∈ Ω, DνAψ(x) ≤ 0, x ∈ ∂Ω \ Γ, (4.6)

for some positive constant µ2.
Since ϕλ(x) ≥ 1 for all x ∈ Ω, by virtue of Lemma 4.4 in [16], with p = 0, we
obtain that any solution v ∈ H1((0, T ); L2(Ω)) ∩ L2((0, T ); H2(Ω) ∩ H1(Ω)) to
problem (4.4) satisfies the Carleman estimate

s3

∫

QT

l(t)−3|v(t, x)|2 exp [2sαλ(t, x)] dtdx

+ s

∫

QT

l(t)−1|∇v(t, x)|2 exp [2sαλ(t, x)] dtdx

+ s−1

∫

QT

l(t)ϕλ(x)−1
[
|Dtv(t, x)|2 +

n∑

i,j=1

|DxiDxj v(t, x)|2
]
exp [2sαλ(t, x)] dtdx

≤ 2C

∫

QT

|Bv(t, x)|2 exp [2sαλ(t, x)] dtdx

+ 2C

∫

QT

|f̃(t, x)|2 exp [2sαλ(t, x)] dtdx, s ≥ ŝ0, (4.7)

where the positive constants C, λ and ŝ0 depend on µ1, T , ‖a0‖L∞(Ω), ‖ai,j‖L∞(Ω),
‖aj‖L∞(Ω), i, j = 1, . . . , n, Ω and Γ.
We now easily deduce the estimate 5,

∫

QT

exp [2sαλ(t, x)]
∣∣∣
∫

S
|k(t, x, y)v(t, y)| dσ(y)

∣∣∣
2
dtdx

≤ K0

∫

(0,T )×S
l(t)−1|v(t, y)|2 dtdσ(y)

∫

Ω
l(t) exp [2sαλ(t, x)]|k(t, x, y)| dx, (4.8)

K0 and h0,s,λ being defined, respectively, by

K0 = ess sup(t,x)∈QT

∫

S
|k(t, x, y)| dσ(y) < +∞, (4.9)

h0,s,λ(t, x, y) = l(t) exp {2s[αλ(t, x) − αλ(t, y)]}. (4.10)

Assume now that kernel k satisfies the following additional condition

k(t, x, y) = 0, t ∈ (0, T ), ψ(x) > ψ(y), (x, y) ∈ Ω × S, (4.11)

sup
(t,y)∈(0,T )×S

l(t)

∫

Ω
|k(t, x, y)| dx =: K1, (4.12)

5For the missing computations and proofs the reader is referred to [21].
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for a suitable positive constant K1. Then from (4.11) we get

∫

Ω
h0,s,λ(t, x, y)|k(t, x, y)| dx =

∫

{x∈Ω:ψ(x)≤ψ(y)}
h0,s,λ(t, x, y)|k(t, x, y)| dx

≤ l(t)

∫

{x∈Ω: ψ(x)≤ψ(y)}
|k(t, x, y)| dx = l(t)

∫

Ω
|k(t, x, y)| dx ≤ K1. (4.13)

Under conditions (4.9) and (4.13), from (4.8) we finally deduce the estimate

∫

QT

|Bv(t, x)|2 exp [2sαλ(t, x)] dtdx

≤ K0K1

∫

(0,T )×S
l(t)−1|v(t, x)|2 exp [2sαλ(t, x)] dtdσ(x). (4.14)

Then we need the following lemma.

Lemma 4.0 Let ω ⊂ Ω be an open subset such that ∂ω ∈ C1. Let w ∈
C1(ω; [0, +∞)) satisfy |∇w(x)| ≤ C0w(x) for all x ∈ ω. Then there exist three
positive constants C1 and C2 such that

∫

∂ω
w(x)|u(x)|2 dσ(x) ≤ (C1 + C0)

∫

ω
w(x)|u(x)|2 dx

+ C2

∫

ω
w(x)|∇u(x)|2 dx, ∀u ∈ H1(ω). (4.15)

In particular, if w(t, x) = l(t)−1 exp [2sαλ(t, x)], then there exists a positive con-
stant C3 such that

∫

(0,T )×∂ω
w(t, x)|u(t, x)|2 dtdσ(x)

≤

∫

(0,T )×ω
[C1 + C0C3sl(t)

−1]w(t, x)|u(t, x)|2 dtdx

+ C2

∫

(0,T )×ω
w(t, x)|∇u(t, x)|2 dtdx, u ∈ L2((0, T ); H1(ω)). (4.16)

Consequently, from (4.14 and (4.16 we easily deduce the estimate

∫

QT

|Bv(t, x)|2 exp [2sαλ(t, x)] dtdx

≤ K0K1

∫

QT

[C1l(t)
2 + C0C3sl(t)]l(t)

−3|v(t, x)|2 exp [2sαλ(t, x)] dtdx

165



+ K0K1C2

∫

QT

l(t)−1|∇v(t, x)|2 exp [2sαλ(t, x)] dtdx.

≤
1

4
T 2K0K1

[1

4
T 2C1 + C0C3s

] ∫

QT

l(t)−3|v(t, x)|2 exp [2sαλ(t, x)] dtdx

+ K0K1C2

∫

QT

l(t)−1|∇v(t, x)|2 exp [2sαλ(t, x)] dtdx. (4.17)

We can choose now s0 ≥ ŝ0 so as to satisfy the inequalities

1

4
T 2K0K1

[1

4
T 2C1 + C0C3s

]
≤

1

2
s3, C2K0K1 ≤

C

2
s, ∀s ∈ (s0, +∞), (4.18)

C being the positive constant in estimate (4.7).
Then from (4.7) and (4.17) for s ≥ s0 we deduce the estimate

s3

∫

QT

l(t)−3|v(t, x)|2 exp [2sαλ(t, x)] dtdx

+ s

∫

QT

l(t)−1|∇v(t, x)|2 exp [2sαλ(t, x)] dtdx

≤ C4

∫

QT

|f̃(t, x)|2 exp [2sαλ(t, x)] dtdx, s ∈ (s0, +∞). (4.19)

So, we have proved the following theorem.

Theorem 4.1 Let the kernel k satisfy conditions (4.9), (4.11), (4.12). Then
the strong solution u to problem (IP2) satisfy the Carleman estimate (4.19), with
v = u − g and s ≥ s0. In particular, problem (IP2) admits at most one solution.

4.1 A continuous dependence result

Since the derivation of the continuous dependence is similar to the one in Subsec-
tion 2.1, we limit ourselves here to sketching the needed procedure 6.
First we observe that the function vε = σεv, where v is the solution to problem
(4.4), solves the initial and boundary-value problem:

(DP2)






vε ∈ H1((0, T ); L2(Ω)) ∩ L2((0, T ); H2(Ω)),

Dtvε(t, x) − A(x, D)vε(t, x)

= Bvε(t, x) + σ′
ε(t)v(t, x) + f̃ε(t, x), (t, x) ∈ (0, T )× Ω,

vε(0, x) = 0, x ∈ Ω,

DνAvε(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω,

(4.20)

6For the missing computations and proofs the reader is referred to [21].
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where

f̃ε = σεf̃ . (4.21)

Assume now that k satisfies an inequality stronger than (4.13, i.e.

H0 := ess sup(t,x)∈QT
l(t)κ

∫

Ω
|k(t, x, y)| dx < +∞, (4.22)

where κ ∈ (0, 1/2). Indeed, in this case we have l(t) ≤ (T 2/4)1−κl(t)κ.
Then, according to (4.11) and Sobolev embedding, from Holmgren’s inequality
(cf., e.g., [19, Chapter 16]), for all t ∈ (0, T ), we deduce the estimate

‖Bvε(t, ·)‖L2(Ω) ≤ (H0K0)
1/2l(t)−κ‖vε(t, ·)‖L2(S)

≤ C(H0K0)
1/2l(t)−κ[‖vε(t, ·)‖L2(Ω) + ‖∇vε(t, ·)‖L2(Ω)]. (4.23)

Proceeding as in Subsection 2.1, we can deduce the desired estimate

‖vε(τ, ·)‖L2(Ω) ≤ J1(ε, σ
′
ε, f, g)1/2 exp

[1

2

∫ τ

0
κε(r) dr

]

+

∫ τ

0
exp

[1

2

∫ τ

t
κε(t) dr

]
κε(t) dt, τ ∈ [0, T ], (4.24)

where

J1(ε, σ
′, f, g) = ‖σ′

ε‖L∞(0,T )C3(ε, T )‖f̃‖2
L2(QT ),

κε(t) = 2µ3 + ‖σ′
ε‖L∞(0,T ) + 2C(H0K0)

1/2l(t)−κ

+ µ−1
2

[
µ3 + C(H0K0)

1/2l(t)−κ
]4

,

for some positive constant C3(ε, T ).
In particular, for all τ ∈ [2εT, T ] we find the desired estimate for u = v + g:

‖u(τ, ·)‖L2(Ω) ≤ ‖g(τ, ·)‖L2(Ω) + J1(ε, σ
′
ε, f, g)1/2 exp

[1

2

∫ τ

0
κε(r) dr

]

+

∫ τ

0
exp

[1

2

∫ τ

t
κε(t) dr

]
‖f̃ε(t, ·)‖L2(Ω) dt, ε ∈ (0, 1/4). (4.25)

Theorem 4.2 Let the kernel k satisfy conditions (4.11), (4.22), with κ ∈ [0, 1/2).
Then the strong solution u to problem (IP) satisfies the continuous dependence
estimate (4.25).

Remark If f = g = 0, then J1(ε, σ′
ε, f, g) = 0 and κε = 0 so that v = 0 in

[2εT, T ]×Ω for all ε ∈ (0, 1/2). This implies u = g = 0 in (0, T ]×Ω. In particular,
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since u ∈ H1((0, T ); L2(Ω)) ↪→ C([0, T ]; L2(Ω)), we can conclude that u = 0 in
QT , i.e. that a unique continuation property holds true for the solution to problem
(4.1).

5 The second ill-posed problem with Cauchy
conditions on the lateral boundary

We consider the ill-posed problem consisting in estimating the trace u(t0, ·), t0 ∈
(0, T ), of the solution u : [0, T ]× Ω → R to the problem

(IP4)






u ∈ H1((0, T ); L2(Ω)) ∩ L2((0, T ); H2(Ω)),

Dtu(t, x) − A(x, D)u(t, x) = f(t, x), (t, x) ∈ (0, T )× Ω,

u(t, x) = g0(t, x), (t, x) ∈ (0, T )× ∂Ω,

DνAu(t, x) = g1(t, x) + Bu(t, x), (t, x) ∈ (0, T )× Γ,

(5.1)

where operator B is defined by (4.2) 7, while g0 ∈ H1((0, T ); L2(Ω)) ∩ L2((0, T );
H2(Ω)) and g1 ∈ L2((0, T ); H1/2(Γ)).
Introduce the function

v = u − g0, (5.2)

where u is the solution to problem (5.1). It is a simply task to show that v solves
the following boundary-value problem:

(IP5)






v ∈ H1((0, T ); L2(Ω)) ∩ L2((0, T ); H2(Ω)),

Dtv(t, x) − A(x, D)v(t, x) = f̃(t, x), (t, x) ∈ (0, T ) × Ω,

v(t, x) = 0, (t, x) ∈ (0, T ) × ∂Ω,

DνAv(t, x) = g̃1(t, x) + Bv(t, x), (t, x) ∈ (0, T ) × Γ,

(5.3)

where

f̃ = f − Dtg + A(·, D)g, g̃1 = g1 + Bg0 − DνAg0. (5.4)

Owing to Theorem 2.4 in [16], with p = 0, since |ν(x) · n(x)| ≥ δ > 0 for all x ∈
∂Ω, we easily deduce that any solution v to problem (5.3) satisfies the Carleman
estimate

s3

∫

QT

l(t)−3|v(t, x)|2 exp [2sαλ(t, x)] dtdx

+ s

∫

QT

l(t)−1|∇v(t, x)|2 exp [2sαλ(t, x)] dtdx

7For the missing computations and proofs the reader is referred to [21].
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+ s−1

∫

QT

l(t)
[
|Dtv(t, x)|2 + |∆v(t, x)|2

]
exp [2sαλ(t, x)] dtdx

≤ 2C

∫

QT

|f̃(t, x)|2 exp [2sαλ(t, x)] dtdx

+ 2Cs

∫

(0,T )×Γ
l(t)−1|g̃1(t, x)|2 exp [2sαλ(t, x)] dtdσ(x)

+ 2Cs

∫

(0,T )×Γ
l(t)−1|Bv(t, x)|2 exp [2sαλ(t, x)] dtdσ(x), s ≥ ŝ0. (5.5)

The positive constants C, λ and ŝ0 depend on µ1, T , ‖a0‖L∞(Ω), ‖ai,j‖L∞(Ω),
‖aj‖L∞(Ω), i, j = 1, . . . , n, Ω and Γ.
Consider now the estimate

∫

(0,T )×Γ
l(t)−1 exp [2sαλ(t, x)]

[ ∫

S
|k(t, x, y)v(t, y)| dσ(y)

]2
dtdσ(x)

≤ K0

∫

(0,T )×S
l(t)−1|v(t, y)|2 dtdσ(y)

∫

Γ
exp [2sαλ(t, x)]|k(t, x, y)| dσ(x), (5.6)

K0 being defined by

K0 = ess sup(t,x)∈(0,T )×Γ

∫

S
|k(t, x, y)| dσ(y) < +∞. (5.7)

Assume now that function ψ satisfies, in addition to properties (2.3), also the
following

ψ(x) = const, x ∈ ∂Ω. (5.8)

Then the kernel h0,s,λ defined by

h0,s,λ(t, x, y) = exp {2s[αλ(t, x) − αλ(t, y)]} (5.9)

satisfies

h0,s,λ(t, x, y) = 1, x, y ∈ ∂Ω (5.10)

Moreover, assume that k satisfies

ess sup(t,y)∈(0,T )×Γ

∫

Γ
|k(t, x, y)| dσ(x) =: K1. (5.11)

Consequently, we get

ess sup(t,y)∈(0,T )×S

∫

Γ
h0,s,λ(t, x, y)|k(t, x, y)| dσ(x)

= ess sup(t,y)∈(0,T )×S

∫

Γ
|k(t, x, y)| dσ(x) ≤ K1. (5.12)
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Under conditions (5.7) and (5.11) we easily deduce the estimate
∫

(0,T )×Γ
l(t)−1|Bv(t, x)|2 exp [2sαλ(t, x)] dtdσ(x)

≤ K0K1

∫

(0,T )×S
l(t)−1|v(t, x)|2 exp [2sαλ(t, x)] dtdσ(x). (5.13)

From Lemma 4.0 we deduce estimate (4.19). Consequently, we have proved the
following theorem.

Theorem 5.1 Let the kernel k satisfy conditions (5.7) and (5.11). Then the
strong solution u to problem (IP4) satisfies the Carleman estimate (5.5), with
v = u− g0 and s ≥ s0, the last integral being dropped out. In particular, problem
(IP4) admits at most one solution.

Remark Though it is possible to give a specific procedure to construct function
ψ in dimension n satisfying properties (4.6) and (5.8), we omit it due to its length,

For lack of space we limit ourselves to stating our continuous dependence result
8.

Theorem 5.3 Let the kernel k satisfy conditions (5.7) and (5.11). Then the
strong solution u to problem (IP4) satisfy the Carleman estimate (5.5), with v =
u−g and s ≥ s0, the last integral being dropped out. In particular, problem (IP4)
admits at most one solution.

6 Final remarks

As the reader will have already noted, treating nowhere non-vanishing kernels in
the integrodifferential case by the Carleman estimates is an open problem, also in
the case where the kernel does not vanish on a subset, with positive measure, of the
sets in (2.12) and (4.11). So, also constructing (simple?) counter-examples would
be an interesting task to understand more clearly which is the situation in a quite
new field of investigation. The very general problem exposed in Subsection 1.3
is, at present, a general framework where only very specific results are available.
Of course, in addition to the questions highlighted here, several other results for
integrodifferential problems without initial conditions are ready and will be sent
to mathematical journals, including also some results for parabolic differential ill-
posed problems with deviating arguments and with Cauchy boundary conditions
on a open subset of the boundary of the open set Ω.

8For the missing computations and proofs the reader is referred to [21].
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This paper intends to focus the interest of mathematicians in this research area.
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