
Models of phase segregation of Allen-Cahn type
without and with temperature effects

Pierluigi Colli,

Dipartimento di Matematica “F. Casorati” ,
Università di Pavia,
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Abstract

We review two new models of phase segregation [3, 4], based on two bal-
ance equations for microforces and microenergy and on nonstandard ther-
modynamically compatible constitutive choices. The first model is akin to
the well-known Allen-Cahn (for others, Ginzburg-Landau) equation for an
order parameter, whose space-time evolution may lead to isothermal and dif-
fusionless phase segregation by atomic rearrangement; the second model is a
variation of the first that accounts for temperature effects. In both cases, we
deal with a system of equations: for the order parameter and the chemical
potential, in the first; for the order parameter, the chemical potential, and
the temperature, in the second.

The study of these systems has been made the subject of an ongoing joint
research program with G. Gilardi and J. Sprekels, whom we thank warmly for
a pleasant and fruitful collaboration. Here we present a quick derivation of
our models and delineate the peculiar features of their mathematical analysis.

1 Introduction

This note is an abridged exposition of the results contained in two articles, [3] and
[4], where certain nonlinear evolution systems of the Allen-Cahn (A-C) type are
studied, intended to provide a mathematical description of the phenomenology of
diffusionless phase segregation by atom rearrangement in crystalline materials.

In the next section, we discuss the physics underlying A-C type models and
their proposed generalizations, beginning with those isothermal, Fried and Gurtin’s
[7, 8] and the one analyzed in [3], and ending by the variant of the latter proposed
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in [4], where thermal effects are taken into account. In Section 3, we formulate the
corresponding mathematical problems carefully, we delineate the solution strate-
gies, and we list with some comments the main mathematical results, referring the
reader to [3]and [4]for details.

The diffusionless isothermal model in [3]consists of a system of two nonlinear
differential equations, the one ordinary the other partial, interpreted as balances
of microforces and of microenergy. A well-posedness result is obtained, and the
long-time behavior of solutions characterized. Crucial to success are the use of the
maximal solution to the ODE and of an a priori uniform bound in the space-time
domain for the time derivative of the order parameter.

As to the temperature-dependent phase segregation model in [4], a local-in-time
existence theorem is proved for a fairly general initial-boundary value problem.
The results obtained for the isothermal case serve as a starting point for such a local
existence proof, which relies on a fixed-point argument involving the Tychonoff-
Schauder theorem.

2 Phase segregation models of A-C type

The Allen-Cahn equation:

κ ∂tρ−∆ρ + f ′(ρ) = 0 (2.1)

is meant to describe evolutionary processes in a two-phase material body, including
phase segregation. In (2.1),

• ρ = ρ(x, t) ∈ [0, 1] denotes an order-parameter field interpreted as the scaled
volumetric density of one of the two phases;

• κ > 0 is a mobility coefficient;

• f ′ denotes the derivative of a double-well potential confined in (0, 1) and
singular at the endpoints.

2.1 Fried and Gurtin’s derivation of the A-C equation

The derivation of (2.1) proposed in [7] and [8] (see also [6] and [9] for similar
derivations and discussions of related models) is based on a balance of contact and
distance microforces:

div ξ + π + γ = 0 (2.2)

and on a ‘purely mechanical’ dissipation inequality restricting the free-energy
growth:

∂tψ ≤ w, w := −π ∂tρ + ξ · ∇(∂tρ), (2.3)

where the distance microforce is split in an internal part π and an external part
γ, the contact microforce is specified by the microscopic stress vector ξ, and w is
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the internal microworking. The following constitutive choices:

π = π̂(ρ,∇ρ, ∂tρ), ξ = ξ̂(ρ,∇ρ, ∂tρ), and ψ = ψ̂(ρ,∇ρ) = f(ρ) +
1

2
|∇ρ|2, (2.4)

turn out to be compatible with the dissipation inequality (2.3) in the sense of a
classical paper by Coleman-Noll [1] if:

π̂(ρ,∇ρ, ∂tρ) = −f ′(ρ) − κ̂(ρ,∇ρ, ∂tρ)∂tρ and ξ̂(ρ,∇ρ, ∂tρ) = ∇ρ.

Under the further assumptions that κ̂(ρ,∇ρ, ∂tρ) = κ, a positive constant, and that
γ ≡ 0, the microforce balance (2.2) yields the standard Allen-Cahn equation (2.1).

2.2 The A-C system in [3]

In [3], on adopting an approach put forward by one of us in [10], we deal with
a substantially modified version of Fried and Gurtin’s derivation, in which the
dissipation inequality (2.3) is dropped and the microforce balance (2.2) is coupled
with the microenergy balance:

∂tε = e + w, e := − div h̄ + σ̄, (2.5)

and with the microentropy imbalance:

∂tη ≥ − divh + σ, h := µh̄ , σ := µ σ̄ (2.6)

(here σ̄ is the external source of energy per unit volume). With a view toward
modeling phase-segregation, we postulate that

• the microentropy inflow (h , σ) be proportional to the microenergy inflow
(h̄ , σ̄) through the chemical potential µ, a positive field;

consistently, we define the free energy to be:

ψ := ε− µ−1η, (2.7)

with

• the chemical potential playing the same role as the coldness ϑ−1 in the
deduction of the heat equation.

Combination of (2.5)–(2.7) leads to the inequality:

∂tψ ≤ −η ∂t(µ
−1) + µ−1

h̄ · ∇µ − π ∂tρ + ξ · ∇(∂tρ), (2.8)

which replaces (2.3) as a filter for thermodynamically incompatible constitutive
choices. We assume that, in addition to the independent variables ρ, ∇ρ and ∂tρ,
the mappings delivering π, ξ, η, and h̄ depend also on µ; moreover, we choose:

ψ = ψ̂(ρ,∇ρ, µ) = −µ ρ + f(ρ) +
1

2
|∇ρ|2. (2.9)

We remark that it makes sense to impose the C-N compatibility of these consti-
tutive assumptions with (2.8), because,
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• given that we have two independent controls γ and σ̄ at our disposal, we are
in a position to guarantee the free linear continuation in time of any given
process t '→ (ρ, µ)(t) at any fixed space point.

We find out that:

π̂(ρ,∇ρ, ∂tρ, µ)= µ − f ′(ρ) − κ̂(ρ,∇ρ, ∂tρ)∂tρ, ξ̂(ρ,∇ρ, ∂tρ, µ) = ∇ρ,

η̂(ρ,∇ρ, ∂tρ, µ)= −µ2ρ, ̂̄
h(ρ,∇ρ, ∂tρ, µ) ≡ 0. (2.10)

The last of these findings implies a crucial mathematical simplification: the mi-
croenergy balance – generally, a PDE – becomes an ODE. Under the additional
assumptions that the mobility is a positive constant and the external distance
microforce is null, the microforce balance (2.2) becomes:

κ ∂tρ−∆ρ + f ′(ρ) = µ, (2.11)

while microenergy balance reads:

∂t(−µ2ρ) = µ
(
κ (∂tρ)

2 + σ̄
)
, (2.12)

where σ̄ = σ̄(x, t) is a given source term.
In [3], we consider the nonlinear evolution system consisting of the parabolic

PDE (2.11) and the first-order-in time ODE (2.12), supplemented by the homoge-
neous Neumann boundary condition:

∂nρ = 0 on the body’s boundary (2.13)

(here ∂n denotes the outward normal derivative) and by the initial conditions:

ρ|t=0 = ρ0 bounded away from 0 , µ|t=0 = µ0 ≥ 0 . (2.14)

This initial/boundary-value problem is to be solved for the order-parameter field
ρ and for the chemical potential field µ.

Note that the microentropy field η = −µ2ρ cannot exceed the level 0 from
below; thus, the prescribed initial field:

η|t=0 = η0 , with η0 = −µ2
0ρ0, (2.15)

is nonpositive-valued. Note also that taking µ ≡ 0 in (2.11) yields the standard
Allen-Cahn equation.

2.3 Accounting for thermal effects in the manner of [4]

As is well-known (see e.g. [10]), the classic heat equation can be arrived at by
coupling the energy balance

∂tε = − div h̄ (2.16)

and the entropy imbalance

∂tη ≥ − divh , h = ϑ−1
h̄ , (2.17)
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with the following constitutive prescriptions:

ψ = ε− ϑη, ψ = ψ̄(ϑ) = −cvϑ(ln ϑ− 1), (2.18)

where the absolute temperature field ϑ is positive-valued and the specific heat cv

is a positive constant. To account for

• thermal effects on the phenomenology of phase segregation by atomic rear-
rangement,

we compare the formats (2.16)–(2.18) and (2.5)–(2.9). A way to match them,
in the light of the relationships of temperature and chemical potential to entropy
provided by statistical mechanics, is to assume that:

(i) the microenergy balance keeps the form (2.5);

(ii) the energy and entropy influxes and the free energy have the mutually con-
sistent forms:

h = (ϑ−1µ)h̄ , ψ = ε− (ϑµ−1)η, ψ = ψ̂(ρ,∇ρ, µ, ϑ). (2.19)

The second assumption is the main element of novelty. With that measure, the
dissipation inequality replacing for (2.8) is:

∂tψ ≤ −η ∂t(ϑµ−1) + (ϑµ−1)h̄ · ∇(ϑ−1µ) − π ∂tρ + ξ · ∇(∂tρ), (2.20)

where, in addition to (2.19)3 for the free energy,

• the distance force, the microscopic stress, the entropy, and the microenergy
influx, are assumed to depend on the list of variables {ρ,∇ρ, µ, ϑ; ∂tρ,∇ϑ}.

We point out that the last two variables in the list give way to incorporate in the
model the dissipation mechanisms relative to, respectively, atom-rearrangement
without diffusion and heat conduction. Indeed, it is clear that postulating (2.19)
covers both special cases when either temperature or chemical potential are space-
time constants.

When C-N compatibility of the current constitutive prescriptions with (2.20)
is sought, a delicate modeling issue emerges, because

• this time, we cannot count on as many controls as needed to guarantee the
free local continuation in time of any given process t '→ (ρ, µ, ϑ)(t) at any
fixed point in space.

We do get the counterparts of the first, second, and fourth of (2.10), namely,

π̂ = −∂ρψ − κ∂tρ, ξ̂ = ∂∇ρψ = ∇ρ, ̂̄
h ≡ 0; (2.21)

moreover, we are left with the following residual inequality:

(∂µψ − ϑµ−2η)∂tµ + (∂ϑψ + µ−1η)∂tϑ ≤ 0. (2.22)
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Now, were it possible to choose both ∂tµ and ∂tϑ arbitrarily, (2.22) would yield
the double equality:

η = ϑ−1µ2∂µψ = −µ∂ϑψ. (2.23)

This observation motivates our decision to complement the balances of microforce
and energy with another field equation, namely,

• the thermodynamic consistency condition

µ∂µψ + ϑ∂ϑψ = 0. (2.24)

With this, (2.22) can be written as

ϑ(∂µψ − ϑµ−2η)∂t(ϑ
−1µ) ≤ 0, (2.25)

and (2.23) follows, provided the time rate of (ϑ−1µ) can be chosen arbitrarily.
Finally, we specify the free energy density (2.19)3 as follows (cf. (2.9)):

ψ = ψ̂(ρ,∇ρ, µ, ϑ) = −µ ρ+ ϕ(ρ, ϑ) +
1

2
|∇ρ|2, (2.26)

with

ϕ(ρ, ϑ) = f(ρ) − cvϑ(lnϑ− 1) − c0 ρ(ϑ− ϑc) and c0 > 0, (2.27)

where the double-well potential and the purely caloric free energy are supplemented
by a coupling term that is effective when and where the temperature differs from
the characteristic temperature ϑc.

With the constitutive choice (2.27), the consistency condition (2.24) reduces to:

µρ + c0ϑρ + cvϑ lnϑ = 0 ; (2.28)

moreover, the balance of microforces (2.2) becomes:

κ ∂tρ−∆ρ + f ′(ρ) − c0ϑ = µ (2.29)

where, with slight abuse of notation, we have written f ′(ρ) for (f ′(ρ) + c0ϑc). As
to the microenergy balance (2.5), we find:

∂t(−ϑ−1µ2ρ) = ϑ−1µ(σ̄ + κ(∂tρ)
2), (2.30)

an equation to be compared with (2.12). These field equations are complemented
by the same boundary and the initial conditions as in, respectively, (2.13) and
(2.14), with ϑ0 recovered from (2.28) in terms of convenient assignments of µ0

and ρ0.
In conclusion, the mathematical model assembled in [4] regards

• processes of phase segregation by atomic re-arrangement in the presence
of thermal effects as solutions of the system of equations (2.28), (2.29)
and (2.30).

Needless to say, the relative initial-boundary value problem is more difficult to deal
with than its isothermal version successfully tackled in [3], let alone the standard
A-C equation (2.1).
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3 Processes of A-C type, isothermal or not

In this section, we collect the well-posedness results we proved for the models
proposed in [3] and [4] in the order, insisting on key ideas and flow of proofs,
rather than on technicalities.

3.1 How to tackle the isothermal problem

3.1.1 Flow chart

For the mathematical investigation of well-posedness of system (2.11)–(2.14), the
strategy exploited in [3] is

• to discuss the ODE first, then to solve the PDE.

In order to carry out this program, a change of variable is introduced that
permits to give (2.12) plus (2.15) the form of a parametric initial-value problem.
One sets:

ξ := −η, ξ0 := −η0, (3.1)

whence µ =
√
ξ/ρ and ξ should satisfy

∂tξ +
κ (∂tρ)2 + σ̄

√
ρ

√
ξ = 0, ξ|t=0 = ξ0, (3.2)

that is, a Cauchy problem parameterized on the space variable x and on the field
ρ(x, ·). The general form of equation (3.2) entails the Peano phenomenon and
allows the existence of infinitely many solutions; among them, a suitably defined
maximal solution ξ is picked, having the desirable property of staying positive as
long as is possible. It turns out that

• the maximal solution to (3.2) is uniquely determined and depends continu-
ously on the coefficients of the ODE, in particular, on ρ and ∂tρ.

Next, (2.11) is transformed into

κ ∂tρ−∆ρ + f ′(ρ) −
√
ξ

1
√
ρ

= 0, (3.3)

an Allen-Cahn equation for ρ with the additional term −
√
ξ/ρ. Note that the

factor
√
ξ is implicitly defined in terms of ρ as the maximal solution to (3.2), so

that

• (3.3) may be viewed as an integrodifferential equation.

Existence, regularity and uniqueness of the solution to (3.3) subject to the
boundary condition (2.13) and the initial condition (2.14)1 are proved by using a
fixed-point argument, which takes advantage of the iterated Contraction Mapping
Principle. It is important to be able to count on the a priori uniform boundedness
of ∂tρ in the space-time domain; this fact is ascertained by applying standard
regularity arguments for parabolic equations.

As to the long-time behavior of solutions, it is verified in [3] that
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•
√
ξ uniquely converges to some function ϕ∞, while any element ρ∞ of the

ω−limit set solves the stationary problem

−∆ρ∞ + f ′(ρ∞) − ϕ∞
1

√
ρ∞

= 0, (3.4)

supplemented by a homogeneous Neumann boundary condition.

3.1.2 Main results

The system under study consists of equations (3.2) and (3.3), to be satisfied over
space-time domains Qt := Ω× [0, t), t ∈ (0, +∞), for Ω a smooth bounded domain
of RN (N ≥ 1) with boundary Γ. Recall that the mobility κ is a given positive
constant. As to the initial data ρ0, ξ0 and the energy source σ̄, it is assumed that

ρ0, ξ0 ∈ L∞(Ω), 0 < ρ0 < 1 and ξ0 ≥ 0 a.e. in Ω,

σ̄ ∈ L2(QT ) for all T > 0.

The coarse-grain free energy f is split as follows:

0 ≤ f = f1 + f2, where f1, f2 : (0, 1) → R are C2-functions,

f1 is convex, f ′
2 is bounded, lim

r↘0
f ′(r) = −∞, and lim

r↗1
f ′(r) = +∞.

A simple and significant example for f1 is:

f1(r) = r ln r + (1 − r) ln(1 − r) for r ∈ (0, 1) ,

while f2 stands for a smooth perturbation of this principal convex part.
In the first place, it is to be observed that, in the forward Cauchy problem (3.2),

the unknown ξ must be nonnegative. Moreover, (i) if one looks for a strictly
positive ξ (for given ρ > 0 and ξ0 > 0), then that problem admits a unique
local solution; (ii) uniqueness is no longer guaranteed if ξ is only required to
be nonnegative; and, (iii) every nonnegative local solution can be extended to a
global solution. All this considered, a (global) solution to problem (3.2) is selected
according to the following maximality criterion:

√
ξ(x, t) = sup {w(x, t) : w ∈ S

∗(σ̄, ξ0, ρ)} for (x, t) ∈ QT , (3.5)

where

S
∗(σ̄, ξ0, ρ) :=

{
w ∈ W 1,1(0, T ; L1(Ω)) : w(0) =

√
ξ0, w ≥ 0 a.e. in QT ,

∂tw = −
(
κ (∂tρ)

2 + σ̄
)
/(2ρ1/2) a.e. where w > 0

}
.

Thus, the maximal ξ satisfies:

√
ξ(x, t) =

√
ξ0(x) −

∫ t

0

a∗(x, s) ds ,
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with a∗(x, s) specified by

a∗(x, s) :=






κ |∂tρ(x, s)|2 + σ̄(x, s)

2
√
ρ(x, s)

if ξ(x, s) > 0,

0 otherwise.

Next, on replacing µ by
√
ξ/ρ in (2.11), (3.3) is arrived at. When this equation

is supplemented with the boundary and initial conditions for ρ given by, respec-
tively, (2.13) and the first of (2.14), an initial/boundary-value problem is obtained,
whose variational formulation in the framework of the spaces V := H1(Ω) and
H := L2(Ω) is: find

ρ ∈ H1(0, T ; H) ∩ C0([0, T ]; V ) (3.6)

satisfying

ρ(0) = ρ0, 0 < ρ < 1 a.e. in QT ,
1

ρ
+

1

1 − ρ
∈ L∞(QT ) ; (3.7)

and solving the equation

κ

∫

Ω

∂tρ(t) z +

∫

Ω

∇ρ(t) · ∇z +

∫

Ω

f ′(ρ(t)) z −
∫

Ω

(
ξ(t)/ρ(t)

)1/2
z = 0

for a.a. t ∈ (0, T ), for every z ∈ V , and for ξ given by (3.5). (3.8)

Problem (3.6)–(3.8) can be regarded as

• an essentially integrodifferential Allen-Cahn equation in the sole unknown ρ.

Note, in particular, that (3.8) has a well-defined meaning, because ξ1/2 is in
L2(QT ) and ρ−1/2 belongs to L∞(QT ) (at least) whenever ρ satisfies (3.6) and
σ̄ ∈ L2(QT ).

The first result proved in [3] concerns existence and uniqueness of the solution.

Theorem 3.1 In addition to the already specified assumptions on the data
f, σ̄, ρ0, ξ0, assume that

σ̄ ∈ L∞(Q∞) and σ̄− ∈ L1(0,∞; L∞(Ω));
1

ρ0

+
1

1 − ρ0

∈ L∞(Ω),

ρ0 ∈ H2(Ω), ∂nρ0 = 0 on Γ, and ∆ρ0 ∈ L∞(Ω).

Then, for every T ∈ (0, +∞), problem (3.6)–(3.8) has a unique solution. Further-
more,

ρ ∈ Lp(0, T ; W 2,p(Ω)) for every p < +∞,

∂tρ ∈ L∞(QT ), and ξ ∈ L∞(QT ). (3.9)

Finally, there exist constants ρ∗, ρ∗ ∈ (0, 1) and ξ∗ ≥ 0, independent of T , such that

ρ∗ ≤ ρ ≤ ρ∗, ξ ≤ ξ∗ a.e. in QT . (3.10)
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The second result proved in [3] has to do with the long-time behavior of the
solution ρ to problem (3.6)–(3.8): the elements of the ω-limit of every trajectory
turn out to be steady-state solutions to the system under study.

Let ϕ∞ : Ω → [0, +∞) be defined by

ϕ∞(x) := lim
t→+∞

√
ξ(x, t) for a.a. x ∈ Ω, where

√
ξ is given by (3.5).

The stationary problem associated to (3.6)–(3.8)reads: find

ρ∞ ∈ V such that ρ∗ ≤ ρ∞ ≤ ρ∗ a.e. in Ω (3.11)

and
∫

Ω

∇ρ∞ · ∇z +

∫

Ω

f ′(ρ∞) z −
∫

Ω

ϕ∞√
ρ∞

z = 0 for every z ∈ V . (3.12)

Theorem 3.2 Under the same assumptions as in Theorem 3.1, let ρ denote the
unique global solution to problem (3.6)–(3.8). Then, the limit ϕ∞(x) exists for
a.a. x ∈ Ω, and ϕ∞ ∈ L∞(Ω). Moreover, the ω-limit, defined by

ω(ρ) := {ρ∞ ∈ H : ‖ρ∞ − ρ(tn)‖H → 0 for some {tn} ↗ +∞}, (3.13)

is non-empty, compact, and connected in the strong topology of H . Finally, every
element ρ∞ ∈ ω(ρ) is actually a solution ρ∞ to problem (3.11)–(3.12).

The reader is referred to [3] for detailed proofs of Theorems 3.1 and 3.2, as well
as for an informal but more complete discussion of the employed techniques.

3.2 How to handle temperature changes

3.2.1 Flow chart

In [4], the strategy is to repeat, for as much as is possible, the procedure that proved
successful in [3]: the ODE (2.30), together with the relative initial condition, is
discussed first, then one passes to the system composed by the PDE and the
transcendental equation, together with the proper boundary and initial conditions.

In order to carry out the first part of the program, a change of variable is
adopted, to give (2.30) plus (2.15) the form of a parametric initial-value problem.
For ϑ0 the initial value of ϑ, one sets:

−η = ϑ−1ξ = ϑ−1µ2ρ, ξ0 = −ϑ0η0, η0 = −ϑ−1
0 µ2

0ρ0.

Accordingly, for
µ =

√
ξ/ρ, (3.14)

the following Cauchy problem is arrived at:

ϑ∂t(ϑ
−1ξ) +

κ (∂tρ)2 + σ̄
√
ρ

√
ξ = 0, (ϑ−1ξ)|t=0 = −η0. (3.15)

Next,
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• attention is restricted to the class of processes such that

ϑ∂t(ϑ
−1ξ) / ∂tξ;

• problem (3.15) is replaced by the simpler problem (cf. (3.2)):

∂tξ +
κ (∂tρ)2 + σ̄

√
ρ

√
ξ = 0, ξ|t=0 = ξ0, (3.16)

parameterized on both the space variable x and the field ρ(x, ·).

Although simpler, the Cauchy problem (3.16) is far from trivial, because it can
exhibit the Peano phenomenon and have infinitely many solutions; just as before,
a suitably defined maximal solution ξ (or

√
ξ) is singled out, having the important

property to stay positive as long as is possible.
To complete the program, one observes that, with (3.14), (2.29) and (2.28)

become, respectively,

κ ∂tρ−∆ρ + f ′(ρ) − c0ϑ =
√
ξ/ρ , (3.17)

and
λ(ρ, ϑ) := c0ρϑ + cvϑ lnϑ = −

√
ρξ , (3.18)

that is

• an integro–differential system for ρ and ϑ,

with
√
ξ implicitly defined in terms of ρ as the maximal solution to (3.16). This

system is to be supplemented with the boundary condition (2.13), the initial con-
dition for ρ in (2.14), and a compatible initial condition for ϑ.

3.2.2 Main results

In view of the above discussion, one looks for suitably smooth triplets of time-
dependent fields (ρ, ξ, ϑ) over a regular region Ω with boundary Γ, such that:

0 < ρ < 1, ξ ≥ 0, and ϑ > 0; (3.19)

∂tρ−∆ρ + f ′(ρ) − c0ϑ =
√
ξ/ρ , with ∂nρ = 0 on Γ; (3.20)

∂tξ +
|∂tρ|2 + σ̄

√
ρ

√
ξ = 0; (3.21)

λ(ρ, ϑ) = −
√
ρ ξ; (3.22)

ρ(0) = ρ0, ξ(0) = ξ0 , and ϑ(0) = ϑ0 ; (3.23)

and that, moreover,

ξ is maximal among the ξ’s satisfying (3.21) and the second of (3.23). (3.24)
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The problem’s structure is the same as in Subsection 3.2, apart for the modifica-
tions due to the presence of the temperature variable ϑ.

Two items deserve a supplemental discussion. The first is that, just as in [3],
we assume that

0 ≤ f = f1 + f2, where f1, f2 : (0, 1) → R are C2-functions, (3.25)

f1 convex, f ′
2 bounded, lim

r↘0
f ′(r) = −∞, lim

r↗1
f ′(r) = +∞, (3.26)

with the constant c0ϑc thought of as incorporated in f ′
2(ρ). The second has to do

with the admissible choices of initial data: not only they must agree with (3.19),
and hence fulfill the conditions

0 < ρ0 < 1, ξ0 ≥ 0, ϑ0 > 0, (3.27)

but also they have to comply with (3.22), that is to say, they have to satisfy

λ(ρ0, ϑ0) = −
√
ρ0ξ0 . (3.28)

To see what restrictions this last requirement implies on the choice of ϑ0, it is
convenient to study the function λr : s '→ λ(r, s) = c0rs + cvs ln s on (0, +∞) for
a given r ∈ (0, 1). Clearly,

(i) λr is strictly convex and tends to 0 as s tends to 0;

(ii) the equation λr(s) = 0 has in (0, +∞) a unique solution, denoted by s̄(r);

(iii) λr has a unique minimum point, denoted by s(r);

in summary, for each fixed r ∈ (0, 1),

0 < s(r) < s̄(r), λ(r, s̄(r)) = 0, and
∂λ

∂s
(r, s(r)) = 0. (3.29)

A simple computation shows that

s(r) = e−1−c∗r, s̄(r) = e−c∗r, and

λ(r, s(r)) = −cve
−1−c∗r, where c∗ := c0/cv . (3.30)

Therefore, a necessary condition for the compatibility of initial data is that
√
ρ0ξ0 ≤ cve−1−c∗ρ0 a.e. in Ω, (3.31)

i.e., that sup ζ ≤ 0, where ζ :=
√
ρ0ξ0 − cve−1−c∗ρ0 .

If such a condition is satisfied, and if we want to solve (a.e. in Ω) the equation
λ(ρ0(x), s) = 0 for s, then uniqueness holds if ζ(x) = 0, and s(ρ0(x)) is the unique
solution. Otherwise, if the strict inequality holds, then there are two solutions, the
one in the interval (0, s(ρ0(x))) the other in (s(ρ0(x)), s̄(ρ0(x))). For the existence
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of a local-in-time solution (ρ, ξ, ϑ), a modest reinforcement of condition (3.31) and
a proper choice of ϑ0 suffice, namely,

sup
(√

ρ0ξ0 − cve
−1−c∗ρ0

)
< 0 and ϑ0 ≥ s(ρ0) a.e. in Ω. (3.32)

Under these assumptions, we can state the following result.

Theorem 3.3 Let (3.25)–(3.26) and (3.32) hold. Moreover, assume that

σ̄ ∈ L∞(Ω× (0, +∞)), (σ̄)− ∈ L∞(0,∞; L1(Ω));

ρ0, ξ0, ϑ0 ∈ L∞(Ω), inf ρ0 > 0, sup ρ0 < 1;

ρ0 ∈ H3(Ω), ∂nρ0|Γ = 0, ∆ρ0 ∈ L∞(Ω);

ξ0 ≥ 0,
√
ξ
0
∈ H1(Ω), λ(ϑ0, ρ0) = −

√
ρ0ξ0.

Then, there exist T > 0 and a triplet (ρ, ξ, ϑ) satisfying:

ρ ∈ H1(0, T ; L2(Ω)) ∩ C0([0, T ]; H1(Ω)); (3.33)

ρ ∈ Lp(0, T ; W 2,p(Ω)) for each p < +∞, ∂tρ ∈ L∞(QT ); (3.34)

ξ ∈ L∞(QT ) ∩ W 1,1(0, T ; L1(Ω)), ϑ , ∂tϑ ∈ L∞(QT ); (3.35)

inf ρ > 0, sup ρ < 1, inf ϑ > 0, (3.36)

and solving problem (3.20)–(3.24).

In [4] this existence result is proved by a fixed-point argument. The employed
method relies on the application of the Tychonoff-Schauder theorem in a weak
topology. By (3.32), one starts by choosing ε0 > 0 such that

√
ρ0ξ0 ≤ cve

−1−c∗ρ0 − 2ε0 a.e. in Ω, (3.37)

and, as the result is local, by fixing a reference final time T ∗ > 0 (e.g., T ∗ = 1),
taking T ≤ T ∗ in course of the proof. Next, by looking at (3.8)–(3.5) and (3.22)
separately,

• two maps:
F1 : ϑ '→ (ρ, ξ) and F2 : (ρ, ξ) '→ ϑ

are constructed, with proper domains: the domain of F1 is a convex set K

depending on T and on a further parameter M ; the domain of F2 is the
range R of F1.

• it is proved that a suitable choice of T and M ensures that the range of F2

is contained in K.

With this, one is entitled to look for a fixed point of F2 ◦ F1. To this aim, the
Tychonoff-Schauder theorem is used and, accordingly, K is endowed with some
weak topology. For details, the reader to Section 4 of [4].
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[6] M. Frémond, “Non-smooth Thermomechanics”, Springer-Verlag, Berlin, 2002.

[7] E. Fried, M.E. Gurtin, Continuum theory of thermally induced phase transi-
tions based on an order parameter, Phys. D 68 (1993) 326-343.

[8] M.E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based
on a microforce balance, Phys. D 92, (1996) 178–192.

[9] A. Miranville, Consistent models of Cahn-Hilliard-Gurtin equations with Neu-
mann boundary conditions, Phys. D 158,, (2001) 233–257.

[10] P. Podio-Guidugli, Models of phase segregation and diffusion of atomic species
on a lattice, Ric. Mat. 55, (2006) 105–118.

52


