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F-76801 Saint Etienne Du Rouvray

Abstract

In this note we present a short review on known results about some elliptic
equations having a lower order term b(x, u, Du) growing quadratically in the
Du-variable and singular in the u-variable. We will assume homogeneous
Dirichlet boundary conditions. We also give an extension of the existence
result given in [10] and discuss some applications to homogenization.

1 Introduction

Recently singular elliptic equations with homogeneous Dirichlet boundary condi-
tions has attracted the attention of several authors. We refer to the model problem

(E)
{

−∆u = b(x, u, Du) + f(x) in Ω
u = 0 on ∂Ω

where Ω is a bounded open subset of RN and b(x, s, ξ) : Ω×R−{s0}×RN → R is
a Caratheodory function, singular in the s variable at a point s0, growing at most
quadratically in the ξ variable. The known results about existence of solutions
belonging to H1

0 (Ω) or H1
loc(Ω) depend on

• the fact that s0 = 0 or s0 $= 0,
• the sign of the datum f(x) in the case that s0 = 0,
• the sign and the size of the lower order term b(x, s, ξ),
• the growth of the function b(x, s, ξ) near the singularity,
• the regularity of the datum f(x).
The case where b(x, s, ξ) is continuous in the s-variable has been widely studied
both in the stationary and in the evolution case, beginning by the early papers
[7],[8].
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The interest in studying the case where b(x, s, ξ) has a singular behaviour in s has
several motivations.

It relies, first of all, on the fact that, confining to the case where s0 = 0 and
to non-negative data f(x) and functions b(x, s, ξ), the equation (E) looks like a
simplified version of the Euler’s equation for functional of the type

I[u] =

∫

Ω
uα|Du|2 −

∫

Ω
fu ,

with α ∈ (0, 1).
Moreover, let us consider equations of the type

ut −∆(um) = |Du|q + f

with m > 1 and 1 < q ≤ 2. which represents a model of growth in porous media. If
we consider steady states solutions and we perform a change of unknown um = v,
we get an equation with singular behaviour in v, growing as q in the Du-variable.

Another motivation in studying problems like (E) is their connection with
existence of boundary blow-up solutions for semilinear problems.
Let us begin by some remark about the case where the singularity is placed at
s0 = 0.
Note that, in this case the term b(x, s, ξ) is singular at each point of the boundary
of Ω. If we are dealing with data f(x) ≥ 0, the solution will lay at the right hand
side of the singularity (u ≥ 0) whatever is the sign of b(x, s, ξ).
If f(x) ≥ 0 and also b(x, s, ξ) ≥ 0, the strong maximum principle guarantees that
u is strictly positive inside of Ω and the lower order term is completely well define.
The same holds true if f(x) ≥ 0 and b(x, s, ξ) ≤ 0, by a deeper use of the strong
maximum principle ([5]).
In the case where f(x) or b(x, s, ξ) can change sign, the solution u can vanishes
inside Ω (and actually this occurs in some situation). Therefore, we have to define
carefully the meaning of solution (see Theorem 1).

Referring to the case |b(x, s, ξ)| ≤ B |ξ|2

|s|k with k > 0 and f(x) ≥ 0, we have

different results about existence and non existence of solutions in H1
0 (Ω)or in

H1
loc(Ω) ([10],[5],[1], [3],[12] [6],[11],[2]), depending on the order k of the singularity

near s = 0, combined with the sign of b(x, s, ξ) and f(x) and the regularity of f .
Recall that, if a lower order term appears in the form g(u)|Du|2, test functions

involving terms like eγ(u), where γ(s) is a primitive function of g(s), are often used
in order to get a-priori estimates for solutions. The use of these test functions
simulate the so called Cole-Hopf transformation which can be applied when the
problem has a model structure and which allows to get rid of the term b(x, u, Du)

getting a semiliner problem. Note that, if b(x, s, ξ) = B |ξ|
|s|k and k ∈ (0, 1), the

function g(s) = 1
|s|k is an L1-function near the singularity s = 0 so that eγ(u) is

bounded near the singularity .
In the case k ≥ 1, the function g(s) = 1

|s|k is no more integrable near s = 0.

Neverthenless, if f ≥ 0, eγ(u) is still bounded for s ∈ (0, β], β ∈ R, since γ(s) is
negative near s = 0 in such an interval. We refer to [10] for existence of solutions.
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If we have a changing sign datum f(x) and k ≥ 1, the solution can cross the
singularity and the function eγ(u) is unbounded near the singularity for s < 0, so
that we are in trouble with a priori estimates near s = 0; this case is, up to now,
an interesting open problem.
In the case where the singularity is placed at a point s0 $= 0 with homogeneous
Dirichlet boundary conditions, no singularity appears on the boundary, but the
sign of the datum f do not provide any information about the position of the
possible solution with respect the singularity.
Very few results are available in this case (see [6], [11]).
In the following Section 2 we will present a list of results on the subject.
In Section 3 we will give an extension of the existence result given in [10].

2 Known results

2.1 Lower order term singular at s0 = 0: existence results

Let us present as a first result on the subject the following theorems (see [10]),
which deal with the case of lower order terms b(x, u, Du) singular at u = 0.
We consider the problem

{

−div(a(x, u, Du)) + λu = b(x, u, Du) + f(x) in Ω,

u = 0 on ∂Ω,
(2.1)

where Ω is an open bounded set of RN , where

λ > 0, (2.2)

f(x) ∈ L∞(Ω), f(x) ≥ 0, (2.3)

where the function
a(x, s, ξ) : Ω× R × R

N → R
N

is a Carathéodory function which satisfies

a(x, s, ξ)ξ ≥ α|ξ|2, α > 0, (2.4)

|a(x, s, ξ)| ≤ ν|ξ|, ν > 0, (2.5)

(a(x, s, ξ) − a(x, s, η))(ξ − η) > 0, ∀ ξ $= η . (2.6)

for every s ∈ R, ξ ∈ RN , a.e. x ∈ Ω, and the function

b(x, s, ξ) : Ω× (R − {0}) × R
N → R

is a Carathéodory function on Ω × (R − {0}) × RN satisfying for every ξ ∈ RN ,
for every s and for almost every x ∈ Ω, either

|b(x, s, ξ)| ≤ C2
1

|s|k
|ξ|2, C2 > 0, 0 < k < 1 (2.7)
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or

C1
1

|s|k
|ξ|2 ≤ b(x, s, ξ) ≤ C2

1

|s|k
|ξ|2, C1 > 0, C2 > 0, k ≥ 1. (2.8)

Note that (2.8) is much more restrictive than (2.7), since (2.8) is a growth condition
for b(x, s, ξ) both from above and from below. In particular, when (2.7) holds true,
b(x, s, ξ) is not assumed to have a specified sign, while b(x, s, ξ) has to be strictly
positive (for ξ $= 0) when (2.8) holds true.

Let M > 0 and β : (0, M ] → R be defined by

M =
‖f‖∞
λ

, β(s) =
1

sk
. (2.9)

In the case where 0 < k < 1, the function β belongs to L1(0, M), while in the case
where k ≥ 1, the function β is not integrable in 0.

Let us introduce the following function γ(s), defined for s ∈ (0, M ], which is a
primitive function of the function C2

α
β(s), defined by

γ(s) =























C2
α

s1−k

1−k if 0 < k < 1,

C2
α

ln( s
M

) if k = 1,

C2
α

M1−k−s1−k

k−1 if k > 1.

(2.10)

Let us finally define, for s ∈ [0, M ], the function ψ by

Ψ(s) =

∫ s

0
eγ(σ)dσ, (2.11)

and, for m > 0 and s ∈ R, the function Sm by

Sm(s) =

{

m if s ≤ m,
s if s ≥ m.

Let us point out that, in the case where 0 < k < 1, γ(s) is an increasing, non
negative bounded function on [0, M ], while in the case where k ≥ 1, γ(s) is an
increasing, non positive function on (0, M ] with lims→0+ γ(s) = −∞.

In both cases eγ(s) is a bounded function on [0, M ] and, therefore, the function
Ψ(s) is well defined by (2.11).

Theorem 2.1

Suppose that (2.2)-(2.6) and (2.7) hold true. Then, there exists at least a function
u such that

u ∈ H1
0 (Ω) ∩ L∞(Ω), u ≥ 0, (2.12)
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Ψ(u) ∈ H1
0 (Ω),

|Du|2

uk
χu>0 ∈ L1(Ω), (2.13)

and
∫

Ω
a(x, u, Du)DΦ+ λ

∫

Ω
uΦ=

∫

Ω
b(x, u, Du)χu>0Φ+

∫

Ω
fΦ, ∀Φ∈C∞

c (Ω). (2.14)

Theorem 2.2

Suppose that (2.2)-(2.6) and (2.8) hold true. Then there exists at least a function
u such that

u ∈ H1
loc(Ω) ∩ L∞(Ω), u > 0, (2.15)

Sm(u) ∈ H1(Ω), ∀m > 0, Ψ(u) ∈ H1
0 (Ω),

|Du|2

uk
∈ L1

loc(Ω), (2.16)

∫

Ω
a(x, u, Du)DΦ+ λ

∫

Ω
uΦ=

∫

Ω
b(x, u, Du)Φ +

∫

Ω
fΦ, ∀Φ∈C∞

c (Ω). (2.17)

Sketch od the proofs of Theorem 2.1 and Theorem 2.2.

We recall that Theorem 2.1 deals with the case where the lower order term
b(x, s, ξ) behaves as |Du|2

uk with 0 < k < 1 and does not satisfy any sign condition,
while Theorem 2.2 deals with the case where b(x, s, ξ) has a stronger singularity,
namely k ≥ 1, but it has also a strict sign. We just give the main steps of the
proofs, showing the test functions used in each step and trying to point out the
differences between the two situations, k < 1 and k ≥ 1.

Step 0. The approximating problems. They are defined by
{

−div(a(x, un, Dun)) + λun = b(x, S 1
n
(un), Dun) + f(x) inΩ,

un = 0 on ∂Ω,
(2.18)

where, for each n ∈ N,

S 1
n

(s) =







1
n s ≤ 1

n ,

s s ≥ 1
n
.

There exists un ∈ H1
0 (Ω) ∩ L∞(Ω), un ≥ 0 solution to (2.18).

We define βn(s) = β(S 1
n
(s)), γn(s) its primitive and Ψn(s) =

∫ s

0 eγn(σ)dσ.

Step 1. Uniform estimates on un in L∞(Ω). We use as test function in (2.18),

eγn(un)(un − M)+ , M =
||f ||∞
λ

.

Step 2. Uniform estimates on Ψn(un) in H1
0 (Ω), i.e.

∫

Ω
|DΨn(un))|2 =

∫

Ω
|Dun|

2e2γn(un) ≤ C.
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We use as test function in (2.18),

vn = eγn(un)Ψn(un).

Step 3. Uniform estimates on b(x, S 1
n
(un), Dun) in L1(Ω) (k < 1) or in L1

loc(Ω)

(k ≥ 1). We use as test function in (2.18),

vn =

{

eγn(un) − 1 k < 1,

(eγn(un) − 1)η2(x) k ≥ 1,

where η(x) is a cut-off function.

Step 4. Uniform estimates on un in H1
0 (Ω) (k < 1) or in H1

loc(Ω) (k ≥ 1).
This easily comes from Step 2 if k < 1 and from Step 3 if k ≥ 1 and implies

un → u a.e. in Ω.

Step 5. For every m > 0, DSm(un) → DSm(u) in (L2(Ω))N (k < 1), or in
(L2

loc(Ω))N (k ≥ 1). We skip this point.

Step 6. One proves that

lim
m→0

∫

C∩{un≤m}
b(x, S 1

n
(un), Dun) = 0

uniformly in n, for any compact set C in Ω. We use as test function in (2.18),

vn =

{

−η2(x)(eγn(m)−γn(un) − 1)+ k < 1,

−η2(x)(eγn(un)−γn(m) − 1)− k ≥ 1.

Step 7. Equi-integrability of b(x, S 1
n
(un), Dun) on compact subsets C of Ω. To

prove that, we write
∫

E

b(x, S 1
n
(un), Dun) =

∫

E∩{un≤m}
+

∫

E∩{un>m}

for any subset E of C. The first term is small uniformly in n, for m sufficiently
small while

∫

E∩{un>m}
b(x, S 1

n
(un), Dun) ≤

1

mk

∫

E

|DSm(un)|2

is small uniformly in n, for |E| sufficiently small and fixed m ( due to the strong
convergence of |DSm(un)| in L2(Ω)).

Step 8. Passing to the limit.
Let us focus our attention on the term

∫

Ω
b(x, S 1

n
(un), Dun)Φ =

∫

u>0
b(x, S 1

n
(un), Dun)Φ +

∫

u=0
b(x, S 1

n
(un), Dun)Φ.
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We easily pass to the limit in the first integral (by a.e. convergence and equi-
integrability) getting

∫

u>0 b(x, u, Du)Φ.

Moreover we prove that, on the compact set C,

lim
n→+∞

∫

C∩{u=0}
b(x, S 1

n
(un), Dun) = 0.

Indeed,
∫

C∩{u=0}

b(x, S 1
n
(un), Dun) =

∫

Cε∩{u=0}

b(x, S 1
n
(un), Dun)

+

∫

(C−Cε)∩{u=0}

b(x, S 1
n
(un), Dun).

Here Cε is a subset of C such that in C−Cε the sequence bn converges uniformly
and whose size is sufficiently small (using the Severini-Egoroff Theorem). Then,
for fixed ε,the first integral is less than ε/2 by equi-integrability.

The second one can be bounded by
∫

(C−Cε)∩{un≤m}

b(x, S 1
n
(un), Dun) ≤ ε/2,

for every n ≥ no(m(ε)) = n0(ε), since we have proved that

lim
m→0

∫

C∩{un≤m}

b(x, S 1
n
(un), Dun) = 0.

Note that, after passing to the limit, the function χu>0 appears in the limit equa-
tion. In the case of Theorem 2.2 , due to the strong maximum principle, we have,
a posteriori, χu>0 = 1 a.e. in Ω and the proof is over. !

Let us recall now some other existence results concerning this subject.
Let us first consider problems whose model is

−α∆u +
1

uk
|Du|2 = f

with α > 0, f ≥ 0.
Note that the lower order term is placed here on the right hand side of the equation
and it is non negative.
In [3] the authors prove that one has existence of finite energy solutions for every
f bounded, strictly positive on compact sets if and only if 0 < k < 2 .
In the case that f(x) simply satisfies f(x) ≥ 0, in [5] the author proves existence
of finite energy solutions for any coercivity constant α > 0 in the case where
0 < k < 1 and f ∈ Lm, with m ≥ (2∗

k )′; existence is proved for α > 2, if k = 1
and f ∈ Lm, with m ≥ 2N

N+2 .
Let us now consider equations which look like

−α∆u =
B

u
|Du|2 + f

103



with α > 0, f ≥ 0. The singular term appears at the right hand side of the
equation and the order of the singularity is k = 1. In [1], the authors prove that,
in general, solutions do not belong to H1

0 (Ω) unless B < α. Existence results in
different spaces are proved, depending on the ratio B

α
and on the regularity of the

datum f(x).
Finally, the case where the datum f(x) has a general sign and the lower order
term grows like 1

|u|k |Du|2 with k < 1 is studied in [12]. Note that in this case the
possible solutions can cross the singularity so that we have to define carefully the
meaning of solution in the same spirit of Theorem 2.1 , where the solutions could
be zero somewhere.

2.2 More general growth of the lower order term in the
gradient variable

A possible model of growth in a porous medium is given by the equation

vt −∆(vm) = |Dv|q + λf,

where 1 < q ≤ 2 and m > 0.
In [2] the authors study the corresponding stationary problem with a homogeneous
Dirichlet boundary condition.

Performing the change of unknown vm = u the problem becomes

{

−∆u = uqα|Du|q + λf(x) in Ω,

u = 0 on ∂Ω.
(2.19)

Here N ≥ 3, Ω ⊂ RN is a bounded domain, 1 < q ≤ 2, α = 1
m

− 1 ∈ (−1,∞) and
f ≥ 0. Note that the behaviour of the problem for α ∈ (−∞,−1] has interest in
itself, even if we are no more in the framework of porous media equations, so that
in the following result the general case α ∈ (−∞, +∞) will be considered.

Theorem 2.3

1. If qα < −1, then the above problem (2.19) has a distributional solution in
W 1,p

loc (Ω), p < N
N−1 , for all f ∈ L1(Ω), and all λ > 0.

2. If −1 ≤ qα < 0, then problem (2.19) has a solution for all f ∈ L
2N

N+2 (Ω) and
without any restriction on λ (infinitely many for q = 2).

3. If 0 ≤ qα the problem (2.19) has a positive solution for λ small and f ∈
L1(Ω).
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2.3 Homogenization problem

We are interested in the asymptotic behaviour, as ε → 0 , of the following problem:










−div(AεDuε) =
bε(x, Duε)

uk
ε

+ f(x) in Ω,

u = 0 on ∂Ω,

(2.20)

where 0 < k < 1, f(x) ∈ L∞(Ω), f(x) ≥ 0,

i) 0 ≤ bε(x, ξ) ≤ c1|ξ|2,

ii) |bε(x, ξ) − bε(x, ξ1)| ≤ c2(|ξ| + |ξ1|)|ξ − ξ1|

and {Aε} is a sequence of matrices in the class

M(α, β) = {A ∈ (L∞(Ω))n2

: (A(x)λ, λ) ≥ α|λ|2, |A(x)λ| ≤ β|λ|}

which H-converges to A0 in the following sense ([16], [13], [17], [14])

Definition 1 {Aε} H-converges to A0 if for any g in H−1(Ω), the solution vε of

{

−div(AεDvε) = g on Ω,

vε = 0 on ∂Ω,

satisfies the weak convergences
{

vε ⇀ v weakly in H1
0 (Ω),

AεDvε ⇀ A0Dv weakly in (L2(Ω))n,

where v ∈ H1
0 (Ω) solves

{

−div(A0Dv) = g on Ω,

v = 0 on ∂Ω.

Theorem 2.4

The solutions uε of (2.20) weakly converge in H1
0 (Ω) (up to a subsequence) to a

function u0 satisfying






































u0 ∈ H1
0 (Ω) ∩ L∞(Ω), u0 > 0,

|Du0|2

uk
0

∈ L1(Ω),

∫

Ω
A0Du0DΦ =

∫

Ω

b0(x, Du0)

uk
0

Φ+

∫

Ω
fΦ,

∀Φ∈H1
0 (Ω) ∩ L∞(Ω).
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As we can see, the limit problem consists of a principal part which is the H-limit of
the principal parts and of a lower order term in which a function b0(x, ξ) appears:
it is constructed from the corresponding terms bε in (2.20), using linear correctors
Cε.
The linear correctors Cε are matrices satisfyng

lim
ε→0

‖Dvε − CεDu0‖(L1(Ω))n = 0

where vε solves
{

−div(AεDvε) = −div(A0Du0) on Ω,

vε = 0 on ∂Ω.

Note that
vε ⇀ u0 weakly in H1

0 (Ω),

The main point in the proof is to prove that actually Cε is also a corrector for the
nonlinear problem (2.20), i.e.

lim
ε→0

‖Duε − CεDu0‖(L1(Ω))n = 0

where u0 is the weak limit of uε.
This situation applies in the framework of composite materials which are ma-

terials containing two or more finely mixed components: the parameter ε describes
the heterogeneities of the material. In a good composite, the heterogeneities are
very small compared with the global dimension of the sample. Smaller are the
heterogeneities, better is the mixture, which appears then, at a first glance, as a
homogeneous material.
From mathematical point of view, we try to find the limit problem, as ε → 0,
which will be the model for the homogenized material.

2.4 Lower order term singular at a point s0 $= 0

We consider now the case where b(x, s, ξ) is singular at a point s0 $= 0, for example
at s0 = 1. The model problem is:















−∆u = ±
sign(u − 1)

|u − 1|k
|Du|2 + f in Ω,

u = 0 on ∂Ω .

(2.21)

and we assume 0 < k < 1. Note that the problem is no more singular at the
boundary, that sign hypotheses on the datum f does not help as in the case
of s0 = 0 and that we are considering a gradient term changing its sign at the
singularity.
In [11] existence of solutions for every datum belonging to a suitable Lebesgue
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space it has been proved. Furthermore, it is proved that the solution pass through
the singularity when data are big enough at least in the case of ” − ” sign.

In the following theorem the case of ” + ” sign in (2.21) is considered.

Theorem 2.5

If f(x) ∈ Lm(Ω), m ≥ N
2 , there exists u ∈ H1

0 (Ω) : |Du|2

|u−1|k ∈ L1(Ω) and ∀ϕ ∈

C∞
0 (Ω)

∫

Ω
DuDϕ =

∫

Ω

sign(u − 1)

|u − 1|k
|Du|2ϕ+

∫

Ω
fϕ

As far as the case of ”−” sign in (2.21) is concerned, we have the following result.

Theorem 2.6

If f(x) ∈ Lm(Ω), m ≥ 2N
N+2 , then there exists u ∈ H1

0 (Ω) : |Du|2

|u−1|k ∈ L1(Ω) and

∀ϕ ∈ C∞
0 (Ω)

∫

Ω
DuDϕ+

∫

Ω

sign(u − 1)

|u − 1|k
|Du|2ϕ =

∫

Ω
fϕ

The only other result we know in this case deals with problems that look like






−∆u + β(u)|Du|2 = f(x) in Ω

u = 0 , on ∂Ω .

with

β(s) =

{ 1
(1−s)k , if 0 ≤ s < 1 ;

+∞ , if s ≥ 1 .

Existence and non existence results are proved in [6].
More precisely, if 0 ≤ k < 2, the authors prove existence of solutions in H1

0 (Ω) ∩
L∞(Ω) for f(x) sufficiently small belonging to Lq(Ω), q > N

2 , and non existence
for large f(x). In the case k ≥ 2 they get existence of solutions in H1

0 (Ω)∩L∞(Ω)
whatever is the size of f(x) ∈ L1(Ω), f ≥ 0.

3 Existence for problem (2.1) under more general
assumptions

In this section we prove existence of bounded solutions to (2.1) improving the
hypotheses on the regularity of the datum f and on the behaviour at infinity of
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the lower order term b(x, u, Du).
More precisely, let us assume, instead of (2.2), (2.3),

λ ≥ 0 (3.22)

f(x) ∈ Lm(Ω), m >
N

2
, f(x) ≥ 0. (3.23)

Moreover, if g : s ∈ (0, +∞) → (0, +∞) is a continuous function for which there
exist k > 0 and s0 > 0 such that

g(s) =
1

sk
if s ≤ s0 and lim

s→+∞
g(s) = 0, (3.24)

we assume either

k < 1 and |b(x, s, ξ)| ≤ C2g(s)|ξ|2 (3.25)

or

k ≥ 1 and C1g(s)|ξ|2 ≤ b(x, s, ξ) ≤ C2g(s)|ξ|2. (3.26)

Theorem 3.1

Assume (3.22), (3.23), (2.4)-(2.6), (3.25). Then, there exists u satisfying (2.12),
(2.13), (2.14) and

‖u‖H1
0(Ω) + ‖u‖L∞(Ω) ≤ C,

where C = C(α, ‖f‖Lm(Ω),Ω, C2).
If λ > 0 and f ∈ L∞(Ω), we can assume the function g(s) just bounded at infinity,
getting the same conclusion.

Theorem 3.2

Assume (3.22), (3.23), (2.4)-(2.6), (3.26). Then, thre exists u satisfying (2.15),
(2.16), (2.17) and

‖Ψ(u)‖H1
0(Ω) + ‖u‖L∞(Ω) ≤ C

where C = C(α, ‖f‖Lm(Ω),Ω, C2).
If λ > 0 and f ∈ L∞(Ω), we can assume the function g(s) just bounded at infinity,
getting the same conclusion.

Sketch of the proof.

We have just to modify Step 1 and Step 2 of the proof of Theorem 2.1 and
Theorem 2.2 of Section 2. We need to prove them in the inverse order. Note that
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the proof of the two steps is the same for Theorem 3.1 and Theorem 3.2.
We define the following auxiliary functions:

gn(s) =







nk if s ≤ 1
n

g(s) otherwise

γn(s) = C2

∫ s

0
gn(σ) dσ, Ψn(s) =

∫ s

0
eγn(σ)dσ.

Since g vanishes at infinity, by the de l’Hôpital’s rule we have

lim
s→∞

eγn(s)

Ψn(s)
= 0,

which implies that, for any ε > 0 there exists a constant C such that

eγn(s) ≤ εΨn(s) + C, ∀n ∈ N, s ∈ R. (3.27)

We will use this estimate in what follows.

Step 1. Uniform estimates on Ψn(un) in H1
0 (Ω).

We take
eγn(un)Ψn(un)

as test function in (2.18), getting

C2

∫

Ω
gn(un)eγn(un)Ψn(un)|Dun|

2 + α

∫

Ω
e2γn(un)|Dun|

2

≤ C2

∫

Ω
gn(un)eγn(un)Ψn(un)|Dun|

2 +

∫

Ω
feγn(un)Ψn(un),

that is, using (3.27),

α

∫

Ω
|DΨn(un)|2 ≤

∫

Ω
f |Ψn(un)|2 + C

∫

Ω
fΨn(un).

The last inequality, thanks to both the summability of f and Sobolev’s inequality,
implies that there exists C = C(α, ‖f‖

L
N
2 (Ω)

,Ω, C2) such that, for all n ∈ N,

‖Ψn(un)‖H1
0 (Ω) ≤ C. (3.28)

Note that in the case of Theorem 7 (i.e. k < 1), since

|Dun|
2 ≤ e2γn(un)|Dun|

2 = |DΨ(un)|2,

we also have, for all n ∈ N,
‖un‖H1

0 (Ω) ≤ C. (3.29)

Step 2. Uniform estimates on un in L∞(Ω).
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We follows here the outline of [1], with some modifications due to the fact that
in our case the parameter k can be any positive number while in [1] the only case
k = 1 is considered.
We begin by proving that, if f ∈ L

N
2 (Ω), the sequence {eun} is bounded in Lp(Ω)

for any p > 1. Defining

Ah,n = {x ∈ Ω : un(x) > h}

we have
lim

s→∞
|Ah,n| = 0, uniformly in n. (3.30)

This follows immediately by (3.29) if we are in the case of Theorem 3.1 (i.e. k < 1).
If we are in the setting of Theorem 3.2, we cannot obtain anymore estimate (3.29)
and we have just estimate (3.28).
In this case, we observe that, at any point x where un(x) > h > 1, we have

Ψn(un)(x) ≥

∫ un(x)

1
eγn(σ)dσ ≥ eγ(1)(h − 1),

so that

{x ∈ Ω : un(x) > h} ⊆ {x ∈ Ω : Ψn(un(x)) > eγ(1)(h − 1)}

and the measure of the last set goes to zero uniformly in n as h goes to +∞, due
to estimate (3.28). Therefore we proved (3.30).
We take now

e2ν(un−h)+ − 1

as test function in (2.18) with ν > 0 and h > 1. By the assumptions, we easily get

2να

∫

Ω
e2ν(un−h)+ |D(un − h)+|

2 ≤ C2

∫

Ω
gn(un)(e2ν(un−h)+ − 1)|Dun|

2

+Q

∫

Ω
f(eν(un−h)+ − 1)2 +

1

Q − 1

∫

Ω
fχun≥h,

where we used the inequality

t2 − 1 ≤ Q(t − 1)2 +
1

Q − 1
, ∀Q > 1, ∀t ≥ 1.

Since lim
s→+∞

g(s) = 0, we have

g(s) <
να

C2
, for every s ≥ h0

.
= h0(ν, α),

so that, for h ≥ h0

α

ν

∫

Ω
|D(eν(un−h)+ − 1)|2 ≤ να

∫

Ω
e2ν(un−h)+ |D(un − h)+|

2

+ Q‖f‖
L

N
2 (Ah,n)

‖eν(un−h)+ − 1‖2
L2∗(Ω)

+ 1
Q−1‖f‖L1(Ah,n).

110



This gives, denoting by S the constant of the Sobolev embedding,

(
α

ν
S2 − Q‖f‖

L
N
2 (Ah,n)

)‖eν(un−h)+ − 1‖2
L2∗(Ω) ≤

1

Q − 1
‖f‖L1(Ah,n).

By (3.30), fixing h sufficiently large, we can make ‖f‖
L

N
2 (Ah,n)

as small as we want

uniformly in n, so that

‖eν(un−h)+ − 1‖2
L2∗(Ω) ≤ C‖f‖L1(Ah,n) ∀n, ∀ν > 0, (3.31)

where C = C(α, ν, C2, ‖f‖
L

N
2 (Ω)

).

This implies also that the sequence {eνun} is bounded in L2∗
(Ω) for any ν > 0

which gives {eun} bounded in Lp(Ω) for any p > 1.

Let us assume now f ∈ Lm(Ω), m > N
2 . Recalling that eνt − 1 ≥ νt, ∀t ≥ 0,

by (3.31) we have, for h sufficiently large,

(

∫

Ω
(un − h)2

∗

+

)
2
2∗

≤
C

Q − 1
‖f‖Lm(Ω)|Ah,n|

1− 1
m .

For r ≥ h we have
(r − h)2|Ar,n|

2
2∗ ≤ C|Ah,n|

1− 1
m .

By classical results ([16]), it follows that

‖un‖L∞(Ω) ≤ C, (3.32)

where C = C(α, ‖f‖Lm(Ω),Ω, C2).

Once we have proved Step 1 and Step 2, the proof of the two theorems follows
the same outline of the proof of Theorem 2.1 and Theorem 2.2. The estimates
on the solution u and on the function Ψ(u) follow by semicontinuity from (3.29),
(3.32),(3.28). For the case where λ > 0, f(x) ∈ L∞(Ω) and g(s) is bounded at
+∞, we observe that the proof of Section 2 still works in the same way. !
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written in [13].

113


