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Abstract

A model for thermally induced phase transitions in rigid materials with
thermal memory was recently proposed, both for the case where the phases
have the same conductivity properties and where they are different. Various
results were derived from asymptotic analysis of the relevant integro-partial
differential equations. In particular, a relation is given connecting the dis-
continuity in the temperature field over the transition zone with the normal
velocity of the transition zone. The latent heat must depend on this veloc-
ity and becomes negligible compared with the specific heat as it approaches
either of the speeds of propagation of thermal disturbances. There is also a
condition which is different from the Stefan condition connecting tempera-
ture gradient values on either side of the transition zone with velocity, but
which reduces to this form in the low transition zone velocity limit.

The model was also extended to the case of heat flow relations which
include instantaneous contributions of the Fourier type as well as memory
terms. Asymptotic analysis in this case yields results very similar to those
for the classical theory without memory, namely no discontinuity in the
temperature field and the Stefan condition.

1 Introduction

There have been two approaches to the macroscopic modelling of phase transitions.
In the first, the transition zone is visualized as a surface of discontinuity or

sharp interface with no thickness, though it may have interfacial structure. In
the second approach, the transition zone is assumed to have finite thickness. It
is characterized by a phase field or order parameter which is constant in the bulk
materials and varies rapidly across the transition zone. The foundation of this
method is the Ginzburg-Landau theory of superconductivity.

We present here a brief review of recent work [1, 2, 3] using asymptotic anal-
ysis of the integro-partial differential equations describing materials with thermal
memory. These governing equations were derived by systematic arguments based
on thermodynamics [1, 2], generalizing an approach by Fried and Gurtin [4] for
materials without thermal memory. The asymptotic analysis technique is as de-
veloped in [5, 6], though the presence of memory causes extra difficulties.

Asymptotic analysis applied to temperature driven phase transitions without
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memory (Fourier theory), using a phase field description yields [6]

1. a temperature field that is continuous across the transition zone Z;

2. the Stefan condition: Discontinuity of heat flux (conductivity × normal deriva-
tive of temperature) across Z = velocity of transition zone × latent heat;

3. a modified Gibbs-Thomson relation.

In [1], these results were generalized to materials with thermal conductivity
described by a memory kernel, where both phases were assumed to have the same
conductivity properties. There was no instantaneous Fourier term. The resulting
equations are related to and generalize those developed in [7], specifically the linear
version, which in turn generalizes [8]. These theories predicts finite velocities of
thermal disturbances, in contrast to the classical Fourier theory and therefore
must be regarded as more physical than the Fourier theory, though the latter is
frequently used in practical applications.

In [2], the asymptotic analysis was extended to materials with heat conductivity
properties described by a memory kernel that was different for each of the phases.
Certain aspects of this model proved considerably more complicated but the results
were straightforward and natural generalizations of the single conductivity theory.

Interesting results were obtained in both of these cases. In particular, a relation
was given connecting the discontinuity in the temperature field over the transition
zone with the normal velocity of the transition zone. To avoid singularities in the
temperature field, it was argued that the latent heat must depend on this velocity
and becomes negligible compared with the specific heat as it approaches either of
the speeds of propagation of thermal disturbances. There was also a relation dif-
ferent from the Stefan condition connecting the values of the temperature gradient
on either side of the transition zone with velocity, but which reduces to this form
in the low transition zone velocity limit.

Finally, in [3], a model was analysed where, as well as memory contributions,
Fourier terms were also present, which greatly effect the results. What emerges
from the asymptotic analysis are features similar to those for the theory without
memory as listed above. By introducing such instantaneous Fourier terms, we of
course return to the problematic feature of infinite speeds of thermal disturbances.

2 Field equations

Let θ be the absolute temperature and θM the transition temperature. We intro-
duce the quantity

u =
θ − θM

θM

which is assumed to be small. The temperature gradient is given by

g = ∇θ
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The phase field is denoted by ϕ where

ϕ(x, t) =

{

1, (solid phase)

0, (liquid phase).

It varies rapidly from zero to one over the transition zone Z. A central feature of
the phase field approach is the presence of a double well potential νf(ϕ), allowing
two stable states, solid and liquid.

Consider a function h(φ) with the properties

h(1) = 1, h(0) = 0

which is assumed to be invertible on the interval (0, 1). For example, we could put
h(ϕ) = ϕn, n > 0. The theory can be developed without specifying a particular
form. Define

gl = (1 − h)g, gs = hg.

so that gl is equal to g on the liquid phase and zero on the solid phase. The
reverse is true for gs.

The standard notation
F t(s) = F (t − s)

is used below.
After many simplifications [1, 2, 3], the field equations (phase field and heat

equations) in non-dimensional form become

αε2ϕ̇ = ε2#ϕ− f ′(ϕ) − uβεg′(ϕ)

u̇ = γġ(ϕ) + ∇ · [(Klhl + Kshs)∇u]

+ ∇ · (kl ◦ ht
l∇ut) + ∇ · (ks ◦ ht

s∇ut),

(1)

where

kl ◦ ht
l∇ut =

∫ ∞

0
kl(s)h

t
l(s)∇ut(s)ds

=

∫ t

−∞

kl(t − s)hl(s)∇u(s)ds,

and similarly for ks ◦ ht
s∇ut. The quantities kl, ks are the dimensionless thermal

memory kernels and

βε =
λ

ν
, γ =

λ

θMc
, ε % 1 (2)

in terms of the latent heat λ, the specific heat c and the height of the double well
potential ν. The parameter α is a constant defined in [1]. The symbol # is the
three-dimensional Laplacian. Equations (1) are based on relations derived from
thermodynamical considerations in [1] and generalized in [2].
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The functions f and g are often chosen as

f(ϕ) =
1

2
ϕ2(1 − ϕ)2, g(ϕ) = ϕ2(3 − 2ϕ).

The quantity f is the double-well potential, alluded to above. This choice of f
is the simplest form of a double-well potential with minima at ϕ = 0 and ϕ = 1.
The quantity g must obey

g(1) − g(0) = 1, (3)

a property also required of h(ϕ). The relationship between g(φ) and h(φ) plays
an interesting role in the theory developed in [2]. The simplest case is where
they are the same function. The choice of these two functions no doubt has some
measurable physical consequences, which are however probably small.

The thermal conductivities Kl and Ks for the liquid and solid phases respec-
tively, which are included in (1), characterize the Fourier terms introduced in [3]
but excluded in the earlier work [1, 2]. The problem of infinite speeds of propaga-
tion of thermal disturbances in the two phases arises again if these are included,
as noted earlier. In spite of this, the effect of inclusion of these terms is certainly
worth exploring, if only because of the use of classical Fourier theory in a wide
variety of contexts.

In the absence of such instantaneous contributions, the speeds of propagation
of thermal disturbances in the two phases [7] are given in dimensionless form by

Vl =
√

kl(0), Vs =
√

ks(0).

The transition zone Z is defined as

Z = {x : ϕ(x, t) ∈ [0, 1]}.

3 Steady-state case

In [1, 2], asymptotic analysis was carried out both in the general case where the
transition zone is moving and changing shape in a time and position dependent way
and for the case where the transition zone has fixed shape and moves at constant
velocity because steady state conditions have been established everywhere in the
medium. Only the latter model was analysed in [3] and will be considered here.
Thus, we assume that

−V = −(Vx, Vy , Vz), Vx > 0

and that steady-state conditions have been established over the entire body. The
solid, for which ϕ = 1, is on the positive side and the liquid, for which ϕ = 0, is
on the negative side. The field equations can be written in a frame moving with
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the transition zone. Explicit time dependence drops out and we obtain

αε2V · ∇ϕ = ε2#ϕ− f ′(ϕ) − uβεg′(ϕ)

V · ∇u = γV · ∇g(ϕ)

+ ∇ · [(Klhl + Kshs)∇u]

+ ∇ ·

∫ ∞

0
kl(s)hl(x − Vs)∇u(x− Vs)ds

+ ∇ ·

∫ ∞

0
ks(s)hs(x − Vs)∇u(x− Vs)ds,

φ = φ(x, y, z) = φ(x), u = u(x, y, z) = u(x).

The transition zone Z is fixed in this frame. For definiteness, a particular surface
S through Z is chosen as a reference interface. The origin of space coordinates
is assumed to be on this interface. The coordinate axis is oriented so that the x
direction is normal to S and the yz plane is tangential to this surface.

We can approximate u in the transition zone by

u(x, y, z) = u(x, 0, 0) − ux(x, 0, 0)

(

y2

2Ry
+

z2

2Rz

)

,

where Ry, Ry are the radii of curvature of S at the origin. Note that

#2u(x, y, z) = −ux(x, 0, 0)K0,

where

#2 =
∂

∂y2 +
∂

∂z2 .

and where K0 is given by

K0 =
1

Ry
+

1

Ry
. (4)

It is a measure of the curvature of the transition zone at the origin.

4 Asymptotic analysis

For x = (x, y, z) in Z we replace x by

r =
x

ε
.

which magnifies the transition zone. Thus, ∂ϕ
∂x is very large in Z while ∂ϕ

∂r = ε∂ϕ∂x
is O(1). Let

u(r, y, z) = u0(r, y, z) + εu1(r, y, z) + O(ε2),

inside the transition zone, and

ū(x, y, z) = ū0(x, y, z) + εū1(x, y, z) + O(ε2)
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outside of Z. The matching condition on u is

u(x/ε, y, z) = u(r, y, z) = ū(εr, y, z)

for large r and εr in the vicinity of the edges of Z, which gives, on putting ε = 0,

u0(±∞, y, z) = ū0(0±, y, z).

and (subscripts r, x denote differentiation)

u0r(±∞, y, z) = 0,

u1r(±∞, y, z) = ū0x(0±, y, z),

u0rr(±∞, y, z) = 0 etc.

(5)

The functions ū0(0±, y, z), ū0x(0±, y, z) are the boundary values of these quantities
on the positive and negative sides of Z.

A similar, though simpler, procedure can be carried out for the phase field
[1, 2].

Asymptotic analysis techniques allow us to solve the field equations in the
transition zone for leading orders.

5 The heat equation

Putting

[u0]− = u0(∞, y, z) − u0(−∞, y, z)

= ū0(0+, y, z)− ū0(0−, y, z),
(6)

the O(ε) relations in [2] give

[u0]− = [ū0]− =
V 2

x γ

V 2
x − V 2

J

,

V 2
J = V 2

s (1 − J(Vx)) + V 2
l J(Vx)

(7)

relating the discontinuity in the temperature field and the velocity. The quantity
J(Vx) depends on the relationship between h(ϕ) and g(ϕ). For Vx near Vs, the
quantity VJ approaches Vs also, so that there is a singularity at this value. Sim-
ilarly, we have singular behaviour when Vx approaches Vl. To avoid singularities
in the temperature field, we must assume that γ, defined by (2), depends on Vx

and goes to zero as Vx approaches Vl or Vs.
With Fourier terms present, we obtain from the O(1) analysis [3]

[u0]− = 0, (8)

which is the same as for classical Fourier theory without memory.
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The O(ε2) relations in [2] give

(V 2
x − V 2

s )ū0x(0+) − (V 2
x − V 2

l )ū0x(0−)

=
1

Vx
CJ (0)[ū0]− =

CJ(0)Vxγ(V)

V 2
x − V 2

J

,
(9)

where K0 is defined by (4) and

Ci(s) = k′
i(s) − VxK0ki(s), i = l, s. (10)

With the Fourier terms present, we obtain from O(ε) terms the form of the classical
Stefan relation [3]

Ksu1r(∞) − Klu1r(−∞)

= Ksū0x(0+) − Klū0x(0−) = −Vxγ,
(11)

where (5)2 has been invoked. Thus, to O(ε) in this theory, the classical (no mem-
ory) results apply.

To O(ε2), when the Fourier terms are present, we obtain [3]

VxKsū0xx(0+) − VxKlū0xx(0−)

− (V 2
x − V 2

s + VxK0Ks)ū0x(0+)

+ (V 2
x − V 2

l + VxK0Kl)ūox(0−) = 0.

(12)

The quantities V 2
s and V 2

l , which are equal to ks(0) and kl(0) respectively, repre-
sent the contributions of the memory terms, indeed the first such explicit contri-
butions in the theory under discussion.

In the case where the conductivity properties are the same in both phases, we
have Vl = Vs = VJ = Vh and Kl = Ks = K, where Vh and K are the unique veloc-
ity of thermal disturbance and unique Fourier conductivity respectively. Relations
(7), (9), (11) and (12) simplify accordingly, reducing indeed to terms involving the
jumps in the derivatives of the temperature field across the transition zone. The
relevant expressions for the case where Kl = Ks = 0 are given in [1].

The results which emerge from [1, 2], without the Fourier terms, are more
realistic, from a physical point of view, than those from [3] because of the finite
speeds of thermal disturbances. They are also more interesting, in particular with
respect to the prediction regarding γ.

6 Phase field equation

An asymptotic analysis of the phase field equation yields [1]

uav = −
σ

λ
(αVx + K0)

uav =

∫ ∞

−∞

u0(r
′)gr(ϕ0(r

′))dr′

121



noting that, by virtue of (3),
∫ ∞

−∞

gr(ϕ0(r
′))dr′ = 1

The quantity uav is an average of u0(r) across the transition zone. Also, σ is the
surface tension.

This is a modified Gibbs-Thomson boundary condition for the material under
consideration, resembling that which emerges from the theory without memory,
which is not unexpected since the memory kernels occur only in the heat equation.

7 The steady-state heat equation outside Z

We now discuss how the macroscopic heat equations are affected by the transition
zone. Let us adopt the notation u instead of ū for dimensionless temperature fields
outside the transition zone.

In the liquid phase (which, in fixed coordinates, is ablating) we have simply

V · ∇u = Kl#u(x) + #

∫ ∞

0
kl(s)u(x − Vs)ds.

and the heat flux equation is given by

q(x) = −Kl∇u(x) − ∇

∫ ∞

0
kl(s)u(x − Vs)ds.

For x = (x, y, z) in the solid phase, the situation is more complicated. Let the
quantity τ(x) be the time period elapsed since the surface S, passing through the
origin, crossed x. Also, τ± are the limits to τ from above and below.

The heat equation has the form

V · ∇u = Ks#u(x) +

∫ τ
−

(x)

0
ks(s)#u(x − Vs)ds

+

∫ ∞

τ+(x)
kl(s)#u(x − Vs)ds + j(x),

j(x) =
CJ

V 2
x

[u]− +
1

Vx

(

ks(τ)ux(x − Vs)|s=τ
−

(x)

−kl(τ)ux(x − Vs)|s=τ+(x)

)

,

[u]− = u(x − Vτ−) − u(x − Vτ+),

CJ (τ) = (1 − J)Cs(τ) + JCl(τ),

(13)

in terms of the notation of (10).
For s > τ , u is the solution of the liquid zone equation. These relations are

thus an inter-related system of integro-partial differential equations, to be solved
subject to suitable boundary conditions.
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The equation for the heat flux in the solid phase can be written as

q(x) = −Ks∇u(x) −

∫ τ
−

(x)

0
ks(s)∇u(x − Vs)ds

−

∫ ∞

τ+(x)
kl(s)∇u(x − Vs)ds − kJ (τ)∇τ [u]−

= −Ks∇u(x) − ∇

∫ ∞

0
k(s)u(x − Vs)ds

+
1

2
∇τ(ks(τ) − kl(τ))[u]J ,

kJ (τ) = ks(τ)(1 − J) + kl(τ)J

[u]J = 2[u(x− Vτ−)J + u(x− Vτ+)(1 − J)]

(14)

where k : R+ (→ R is defined by

k(s) = kl(s), s > τ(x)

= ks(s), s < τ(x).

The quantity ∇τ in (14) can be approximated by [1]

∇τ =
1

Vx
(1, 0, 0),

so that y and z components of terms proportional to it can be neglected. We have
included the Fourier terms. If these are zero, [u]− is given by (7), while if they
are non-zero, it vanishes, in accordance with (8) so that the expression for j(x) in
(13) and the non-integral terms in (14) become simpler.
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Modena 3, (1948) 83–101.

124


