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Abstract

In this work we review a number of results concerning the existence of
stable steady states for systems of ordinary differential equations of the type
usually termed as biochemical cascades. These are typically nonlinear sys-
tems involving interconnected activation-inhibitory feedback loops, and are
known to play a basic role in the regulation of key physiological human func-
tions. In particular, conditions will be recalled that ensure the existence of at
most one stable steady state as opposed to multistability, i.e. the existence
of several stable steady states. The latter is considered to be a key feature
in biological processes mediated by biochemical cascades.

1 Introduction

Many physiological human functions are mediated by biochemical cascades, either
at the cellular or at systemic level. Such cascades are complex systems of chemical
reactions, where products of ongoing reactions are consumed in subsequent ones.
In general, such networks are made up of positive and negative feedback loops
whose interaction results in efficient operation. Typical examples are provided by
the mitogen-activated protein kinase (MAPK) system ([1]), the blood coagulation
cascade (BCC) (cf. [2, 3, 4, 5]) and the immunological response (IR) to pathogen
invasion, which results in the production of cytotoxic substances to neutralize in-
fectious agents (cf. [6, 7, 8]).

As it turns out, the presence of a highly wired set of activation-inhibition feedback
loops seems to be essential for the full functionality of any of those systems. Such
structure provides a scheme of checks and balances which yields efficient regula-
tion. By this we mean that biochemical function is neither too small nor too large,
but is kept instead at a level appropriate to the nature of the challenge to be met.
For this reason, any disruption in the operation of such network may have serious
consequences. For instance, lack of efficient coagulation response is associated to a
number of bleeding diseases, of which those going under the name of haemophilia
are most widely known ([9]). On the other hand, overactivation of the coagulatory
system results in thrombotic disorders. Among them, disseminated intravascular
coagulation (DIC) is receiving increased attention as a major threat in late-stage
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tumour processes ([10]).

The importance of such chemical networks raises at once a number of questions.
For instance, one may wonder what is the structural design of such biochemical
systems, how their regulatory properties are achieved, and where their fragility
points lie, that is where those chemicals reactions are located whose impairment
might result in irreversible operational failure.

To address the previous issues, a useful approach consists in viewing the system
under consideration as a circuit that can be modeled by means of a suitable set
of differential equations, which govern the evolution in time of the concentrations
of the chemicals that mediate the corresponding processes. Once the model has
been established, one is led to identifying significant solution behaviours and to
describe their relevance for the dynamics of the equations considered. For instance,
of particular interest in this context is the possible existence of stable steady states
(equilibria), the characterization of their basins of attraction, and the dependence
of such equilibria with respect to changes in the parameters involved. A related
question is that of detecting (and when possible, to prevent) sharp changes in
the values of solutions components. If unchecked, such large variations may dis-
rupt crucial feedback loops, thus compromising the functionality of the full system.

When it comes to analyzing the dynamics of the equations under consideration,
a major obstacle to be overcome is the large number of uncertainties that are
usually present in these models. For instance, little is known about the precise
nature of many of the chemical reactions involved in actual biochemical cascades.
To gain insight into the process at hand, a typical approach consists in focusing in
a particular feature of the system, as for instance stability properties of a relevant
(sub)network, and to select by means of guesses (whether educated or wild) a set of
parameters for which significant information about the property being considered
can first be obtained, and then be compared with experimental or clinical data.
Then a sensitivity analysis is performed, to check whether the solution behaviours
thus obtained are preserved when parameter values are subject to variations within
a sufficiently large range. When this occurs, it is often said that the behaviour
analyzed is a robust one. However, such procedure is far from being safe from
criticism. For instance, it is well known that when systems with even a moderate
number of unknown parameters are considered, one may obtain similar properties
for very different parameter choices, each of them corresponding to quite different
assumptions on the nature of the underlying kinetics (cf. [11] for an discussion on
this situation).

Bearing these facts in mind, an alternative and suggestive approach may consist
in exploring which type of properties (if any) can be ensured for systems for which
a precise knowledge of the parameters therein involved is lacking .For instance,
one may wonder what stability properties can be derived for a system where the
general structure of the reactions involved is known, but the values of the corre-
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sponding reaction rates are not. In this note we shall review some of the results
obtained when such approach is applied to the issue of multistability in biochem-
ical cascades. In particular, we shall be concerned with criteria to ensure (or to
prevent) the existence of several stable steady states in arbitrarily large chemical
networks as those used to describe biochemical cascades.

More precisely, the plan of this work is as follows. In Section 2 below we provide an
introductory discussion on complexity and stability. The key fact therein recalled
is a seminal result on conditions ensuring that the trivial solution of a class of
linear systems of ordinary differential equations (ODEs) is stable, using only the
signs (but not the precise values) of the systems coefficients. We then start to
explore the subject of multistability for general autonomous systems in Section 3.
Following the approach in reference ([12]), the focus is made on conditions ensuring
the existence of at most one single equilibrium, a fact usually termed as injectivity.
As will be explained there, the conditions thus derived heavily depend on the actual
structure and parameters of the system under consideration, and turn out to be
computationally unwieldy in most cases. Taking this into account, we then recall
in Section 4 conditions yielding injectivity under large parameter uncertainty. Two
results are provided there that concern respectively general autonomous systems
and a particular class of them, involving only polynomial-type nonlinearities, which
provide a typical framework for the biochemical cascades that motivate this work.
As it turns out from the results in those Sections, conditions for the existence
of a single equilibrium can be derived under rather general assumptions, whereas
conditions sufficient for multistability remain more elusive to this day. A short
discussion on this last issue is then provided in Section 5 as a complement for
the contents of the previous Sections. In particular we shall observe that coupling
through positive feedback of so-called monotone systems may lead to the onset of
bistability in the resulting system. The paper then concludes with a final Section
which summarizes the views previously presented and provides a short discussion
on them.

2 Stability and Complexity

A key underlying issue in our approach is the relation between stability and com-
plexity in population dynamics models. As a matter of fact, and arising from areas
as diverse as Economics (cf. [13, 14]), Chemistry (cf. [15, 16, 17]) and Ecology
([18]), the following long-standing question has been raised: To determine stability
conditions for the solutions of a (linear or nonlinear) differential system without
a precise knowledge of its coefficients. More precisely, consider first the following
linear system:

dxi

dt
=

n�

j=1

aijxj(t) i = 1, ..., n (1)
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where for i, j = 1, ..., n the aij are real coefficients whose actual values are not
known. Assume that x∗ = (x∗

1, ..., x
∗
n) is a steady state (also called an equilib-

rium) of (1), so that:

n�

j=1

aijx
∗
j = 0 for i = 1, ..., n (2)

Notice that the origin: x∗
i = 0 for 1 ≤ i ≤ n is always a steady state of (1). As in

([18]) we may wonder whether the stability of x∗ can be ascertained merely from
the knowledge of the signs (+,−, 0) of the {aij}. In an ecological context, param-
eters {aij} represent the interaction coefficients describing the effect of species j
upon species i, and the corresponding matrix A = (aij) can be thought of as a
representation of the trophic web involving species x1, ..., xn. In particular, the
effect of species j upon species i is positive, negative or neutral depending on the
cases aij > 0, aij < 0 or aij = 0 respectively. It is well known that the steady
state x∗ is (asymptotically) stable if

Reλ < 0 for any eigenvalue of A, i.e. for any solution of
det(A− λI) = 0, I being the identity matrix.

(3)

Our former question can then be recast as follows. Is it possible to ensure that
condition (3) holds knowing only the signs of the coefficients {aij} in A? As it
turns out a positive, easy-to-check answer was obtained in ([14]), that can be
stated as follows. Let A = (aij) be a given matrix. A is said to be qualitatively
stable if every matrix A = (aij) whose coefficients aij have the same signs as the
aij ’s satisfies (3). Then the following result holds

Theorem 2.1 ([14])

The following are necessary and sufficient conditions for A = (aij) to be qualita-
tively stable:

(i) aijaji ≤ 0 for i �= j.

(ii) i1 �= i2 �= ... �= im, ai1i2 �= 0, ai2i3 �= 0, ..., aim−1im �= 0 implies aimi1 = 0 for
any m > 2.

(iii) aii ≤ 0 for all i, akk < 0 for some k; 1 ≤ k ≤ n.
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(iv) det(A) �= 0.

As a consequence of Theorem (2.1), the system (1) corresponding to a matrix A
with the qualitative pattern described below is qualitatively stable provided that
det(A) �= 0, whereas that corresponding to matrix B is not.

A =





− + + +
− − 0 0
− 0 − 0
− 0 0 −



 B =





− + + +
− − + +
− − + −
− − + −





Concerning Theorem (2.1), a few remarks are in order. To begin with, there is a
natural extension of that result to general autonomous systems of the type:

dx

dt
= F (x) (4)

where x = (x1, ..., xn), F = (f1, ..., fn) and for 1 ≤ i ≤ n, fi ≡ fi = fi(x1, ..., xn) is
a smooth (say continuously differentiable) real function. If (4) has a steady state
x∗ = (x∗

1, ..., x
∗
n) (so that fi(x∗

1, ..., x
∗
n) = 0 for i = 1, ..., n), on setting xi = x∗

i + �xi

with |�xi| << x∗
i , 1 ≤ i ≤ n, one readily sees that, to the lowest order, the small

amplitude perturbations {�xi} satisfy a linear system (1) with coefficients:

aij = JF (x∗) (5)

JF being the jacobian matrix JF =
�

∂fi

∂xj

�
≡ (Jij), 1 ≤ i, j ≤ n.

Therefore, Theorem (2.1) is still relevant to discuss linear stability of steady states
of (5), although it provides no information concerning stability with respect to
large perturbations thereof. Notice that a given system (1) (respectively (4)) may
possess asymptotically stable (respectively, linearly asymptotically stable) equi-
libria when conditions in Theorem (2.1) are not satisfied. However, additional
information on coefficients is then needed in order to further discuss stability. On
the other hand, neutral stability (i.e. the case where Reλj = 0 for some eigenval-
ues λj with 1 ≤ j ≤ m ≤ n with Reλi < 0 for m < i ≤ n) falls out of the scope of
such result.

A particularly interesting question in this context is that of determining the num-
ber of steady states of a given system (1), (4). We will address this issue in our
following Sections.
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3 Multistability in Nonlinear Autonomous Sys-
tems

In many cases of practical interest it is possible to ensure the existence of at least
one steady state. For instance, consider a chemical network involving S1, S2, ..., Sn

chemical species and that m reactions take place among them. The jth-reaction
can thus schematically be represented as follows:

cj1S1 + cj2S2 + ... + cjnSn → dj1S1 + dj2S2 + ... + djnSn

cji, dji being nonnegative integers. When reactions are reversible, the sign →
above is to be replaced by �. Using mass action law, we may represent the over-
all process by means of the following system:

dxi

dt
=

m�

j=1

aijx
cj1
1 · · ·xcjn

n ≡
m�

j=1

aijx
cj i = 1, ..., n (6)

where aij = (dji − cji)kj , kj being the rate constant for the reaction being con-
sidered. For later purposes, we shall assume that dji �= cji. System (6) is a
particular case of (4), its main feature being that only polynomial nonlinearities
are taken into account. Clearly, (6) always has a trivial steady state x0 = (0, ..., 0).

A particularly relevant question for equations (6) is under which assumptions such
system has at least two stable equilibria. Since in many situations of practical in-
terest x0 turns out to be stable, the question can be reformulated in that case as
when, and how, a new stable equilibria appears, a fact often referred to as bista-
bility. More generally, one may wonder under which conditions does (6) possess
several stable equilibria, a property termed as multistability. The latter feature
is in particular associated to key switch-like processes in cell development, as well
as to the onset of functional thresholds in the operation of biochemical cascades
([19, 20]). As a matter of fact, the question of multistability can be formulated
for more general systems as (4), although specific results for systems (6) are par-
ticularly relevant.

As it turns out, it is often easier to exclude multistability then to derive it. In the
sequel we shall elaborate on this statement, and for that purpose we shall closely
follow the excellent revision provided in ([12]).

Let us consider first the general autonomous system (4). We say that F (and also
(4)) is injective if F (x1) �= F (x2) whenever x1 �= x2. Clearly, an injective system
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cannot possess more than one steady state, and thus injectivity and multistability
are mutually excludent. At first glance, injectivity conditions may seem easy to
derive. Indeed, for one-dimensional, differentiable real functions f : � → � the
condition f �(x) �= 0 for all x implies injectivity. It thus seems natural to expect
that in the higher-dimensional case (4) the condition det(JF ) �= 0 will play a sim-
ilar role. However, this is not the case. In particular, it has been shown in ([21])
that the map F : �2 → �2 given by

F (x, y) = (e2x − y2 + 3, 4e2xy − y3) (7)

is such that det(JF ) > 0 for any (x, y) ∈ �2, but F (0, 2) = F (0,−2) = 0. No-
tice that (7) is not of the form (6). This result provided a counterexample to a
conjecture raised in ([13]) according to which injectivity would be satisfied if all
leading principal minors in JF do not vanish. However, the authors of ([21]) were
able to obtain a positive injectivity result by modifying the condition proposed
in ([13]) in a suitable manner. More precisely, one says that M is a P -matrix if
all of its principal minors are strictly positive, and that M is a weak P -matrix if
det(M) > 0 and all other principal minors are nonnegative. Then one has:

Theorem 3.1 ([21])

Let D be a rectangular region of �n (n > 1) and let F : D → �n be differentiable.
Then if JF is a P -matrix for all x ∈ D, F is injective. The same result holds true
if JF is a weak P -matrix and D is open.

The previous Theorem applies to general autonomous systems (4), and one may
wonder if weaker injectivity conditions could be obtained for polynomial nonlin-
earities as those in (6). For instance, a natural question to consider is whether
requiring det(JF ) �= 0 for all x ∈ �n would suffice for that purpose. How-
ever, this is not in general the case. As a matter of fact, a polynomial function
F ≡ F (x, y) : �2 → �2 with degree(x) = 10 and degree(y) = 35 exists for which
det(JF ) �= 0 in �2 but F is not injective ([22]). This fact notwithstanding, con-
dition det(JF ) �= 0 turns out to be sufficient to ensure injectivity in the case of
quadratic nonlinearities, and the injectivity conjecture advanced in ([13]) has been
proved for polynomial functions (6). We shall omit further details on this type of
results, and refer instead to ([12]) for additional information.

4 Injectivity Under Parameter Uncertainty

Checking the assumption made to obtain injectivity in our previous Section needs
a detailed knowledge about functions and parameters in equations (4) or (6).

131



However, for many reactions involved in biochemical cascades such information
(for instance, the actual values of reactions rates) is beyond current experimen-
tal reach. This makes particularly relevant to discuss injectivity (or in general
to decide about multistability) just based on information about the topology and
general structure of the chemical network under consideration, without full knowl-
edge of the parameters involved.

To proceed in this direction, we borrow some notation from ([12]) and consider
a general autonomous system (4) as represented by its interaction graph G. The
latter consists of vertices Si (one for each species whose concentration is denoted
by xi) and edges joining each pair of vertices (say Si1 and Si2) with Ji1i2 �= 0,
where Jik =

�m
j=1

cjk

xk
aijxcj , m being the number of reactions involved, so that

JF = (Jik). For 1 ≤ j ≤ m, we shall denote by Jijk the effect of Sk on Si by
means of the jth-reaction, so that Jik =

�m
j=1 Jijk. The sign of the edge joining

Si1 and Si2 is that of Ji1i2. An important assumption to be retained in the sequel
is that neither direct autocatalysis nor inhibition are allowed in the systems to
be considered. In particular, self-edges as Jii are excluded. Indirect autocatalysis
(and autoinhibition) is however allowed by means of intermediate species, leading
to the definition of cycles. A cycle in a graph is defined as an ordered subset
(i1, i2, ..., ij) with j ≤ n such that there exist edges joining Si1 to Si2, Si2 to
Si3, ... and Sij to Si1. A cycle is said to be positive (respectively negative) if
the product of the signs of its edges is positive (respectively negative). Two cycles
are disjoint if they have no vertices in common; otherwise we say that they interact.

The following example taken from ([12]) may be helpful to illustrate the previous
concepts. Consider a hypothetical chemical network consisting of six reactions
which involve eight species (to be labeled in alphabetical order) as follows:

1. A + B + C → X

2. A + B + D → Y

3. C + E → A

4. D + E → B

5. A→ Z

6. Z → D

Such network can be translated into a system of eight differential equations (one
for each species) in a straightforward manner. For instance, denoting by xi the
concentration of the ith-species (1 ≤ i ≤ 8), one has that

dx1

dt
= −k1x1x2x3 − k2x1x2x4 + k3x3x5 − k5x1 (8)
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where the four terms in the right of (8) are obtained from equations 1, 2, 3 and 5
above, and constants k1, k2, k3 and k5 are the corresponding (positive) reaction
rates. One of the several cycles that can be considered in that network is that
denoted by S, which can be represented by the diagram: C ⇒ A ⇒ Z ⇒ D ⇒
B ⇒ C. On writing the full differential system associated to this network, and
upon recalling that Jik = ∂

∂xk

�
dxi
dt

�
, we readily check that:

J13 = −k1x1x2 + k3x5, J81 = k5, J48 = k6

J24 = −k2x1x2 + k4x5, J32 = −k1x1x3
(9)

In particular, if k1 = k2 and k3 = k4, the product of these terms is negative and
so is the sign of the cycle S.

We are now ready to state a first injectivity result for a general autonomous system
(4). This reads as follows.

Theorem 4.1 ([23])

Let D be an open rectangular region of �n (n > 1) and let F = (f1, ..., fn) : D →
�n be a differentiable function. If the interaction graph of F has no positive cycles
for any x ∈ D, then F is injective.

At this juncture, one may wonder whether sharper results could be obtained for
the case of polynomial systems (6), of which the previous example is a particular
case. As a matter of fact, the answer to that guess is a subtle one. We shall
next see that injectivity can be proved irrespective of the reaction rates involved,
provided that (6) satisfies some strict structure conditions. To describe these in
detail, we need some additional notation taken again from ([12]). For any given
cycle S, consider any of its edges, say that going from Si1 to Si2. For any reaction
(labeled as j) that contributes a term (denoted as Ji2ji1) to Ji2i1, we define the
sub-sign of that edge as the sign of Ji2ji1. For a given set of N reactions, the
sub-sign of a cycle is the product of the sub-signs of its edges with respect to the
reactions involved. This product is called sub-positive (respectively sub-negative)
if there is an even number (respectively an odd number) of sub-negative edges.
Note that the sub-sign of an edge in general depends on the choice of the reaction
j. Edges such that they are sub-positive for some j and sub-negative for other j
are termed as reaction-ambiguous. Finally, given two cycles S1, S2 and choices
of reactions j for each of their edges, S1 and S2 are said to strongly intersect if
they share at least one common vertex Si so that the reaction j chosen for the
outgoing edge from Si is the same in both cycles. Otherwise S1 and S2 are termed
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as weakly disjoint. For example, consider cycle S in our previous example and
assume that k1 = k2, k3 = k4 as before. On selecting the reactions corresponding
to the terms J133, J851, J468, J224 and J312, we easily check that:

J133 = k3x5, J851 = k5, J468 = k6

J224 = −k2x1x2, J312 = −k1x1x3

Thus with respect to that choice S is sub-positive. However the sign of S corre-
sponds to that of the product of the quantities in (9), which is always negative
under our current assumptions.

Before stating our next result, some additional terminology is needed. Consider a
cycle S given by vertices numbered as (i1, i2, ..., ik) and let (j1, j2, ..., jh) be reac-
tion indexes so that Jih+1jhih �= 0 for 1 ≤ h ≤ k. We then define the value V of
that cycle with respect to the choice made of reaction indexes as follows:

V =

�����

�k
h=1 Jih+1jhih�k
h=1 Jihjhih

�����

Finally we slightly enlarge the class of polynomial nonlinearities considered in (6)
by explicitly including inward and outward flows for each species. This amounts
to replacing (6) by

dxi

dt
= fi +

n�

j=1

aijx
cj − rixi i = 1, ..., n (10)

for some fi > 0, ri > 0. One then has:

Theorem 4.2 ([17], cf. also [12])

Consider a system (10) such that any cycle that is sub-positive for some chosen
reaction indexes has value V = 1. Then if two sub-positive cycles never strongly
intersect, the network cannot have more than one steady state.

5 How can Multistability be Obtained

The results recalled in our previous Section display two significant features. First,
they provide conditions sufficient to prevent multistability rather than to ensure
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it. Second, they show that in many cases injectivity can be derived from in-
formation about the general structure of the chemical network being considered,
without making use of any detailed knowledge of the actual system parameters.
The overall conclusion is that multistability seems easier to exclude than to obtain.

However in many cases of practical interest, multistability (and in particular bista-
bility) appears as a crucial property of biochemical networks. This is in particular
the case when system operation makes use of switches, whereby different states
can be achieved as a consequence of external inputs. As it turns out, bistability
in that context is usually achieved only within a precise range of parameter val-
ues (cf. for instance [19]). This is a general situation, also observed in ecological
problems ([24, 25]). It is worth mentioning in this context that, while in principle
biochemical cascades can be derived by linking in many possible ways otherwise
arbitrary elementary circuits, biological networks are prone to using a rather lim-
ited type of such building blocks, usually termed as motifs ([26]). Multistability
thus requires of very precise conditions to be presented. This naturally leads to
the question of characterizing at a theoretical level which classes of systems are
able to sustain multistability, an important step towards understanding the origin
and structure of actual multistable biochemical circuits.

While a detailed analysis of the previous question goes well beyond the scope of
this work, we shall content ourselves with briefly remarking on a tool that has been
shown to be relevant to that discussion. Specifically, we shall shortly describe the
so-called monotone systems and their controllability, a subject which has been
extensively developed in ([27, 28, 20]) and references therein.

More precisely, following ([27]) we define monotone systems as follows. Consider
a general autonomous system (4) and its associated interaction graph G defined
in our previous Section. A spin assignment

�
for G consists in associating to

any vertex Si in G a number σi, where σi = +1 or σi = −1. For any edge join-
ing vertex Sj to Si, we say that such edge is consistent with the spin assignment
if Jijσiσj = 1. Finally, we say that

�
is a consistent spin assignment for G if

every edge in G is consistent with
�

. In particular, this means that if Jij > 0
(respectively Jij < 0) then Si and Sj should have the same spin (respectively,
they should have opposite spins). A system (4) is then said to be monotone if
there exists at least one consistent spin assignment for its associated graph G. An
important property of this class of systems is that when a positive perturbation is
added to the concentration at a vertex Si, the effect of such perturbation on the
remaining vertices can be readily described. In particular, for vertices Sij with
Jij > 0 (respectively Jij < 0) the concentration at Sj will increase (respectively
decrease). A symmetric result holds for the case of negative perturbations.

Monotone systems are known to provide important building blocks to produce
multistable systems, even if any of the elementary monotone systems used for that
purpose is not itself multistable. To achieve that goal, positive feedback among
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building monotone systems is necessary. In order to make these ideas precise, we
follow ([27, 28]) and consider the following input/output (I/O) system:

dx

dt
= f(x, u) ; y = h(x) (11)

where x = (x1, ..., xn), f = (f1, ..., fn), u = (u1, ..., uk) and y = (y1, ..., yj). Let us
write x ≥ x to denote that xi ≥ xi for 1 ≤ i ≤ n, and define u ≥ u and y ≥ y in
a similar way. Then (11) is said to be a I/O monotone system if h is monotone
(that is, x ≥ x implies y ≥ y) and for any initial values x0, x0 and any inputs u,
u one has that, whenever x0 ≥ x0 and u ≥ u, then the output y = h(x) satisfies
y ≥ y.

The bistability of a system consisting of two interconnected, monostable monotone
systems can be obtained as follows. Consider the systems:

dx1
dt = f1(x1, u1) ; y1 = h1(u1)

dx2
dt = f1(x2, u2) ; y2 = h2(u2)

(12)

where x1 = (x11, ..., x1n) and an obviously similar notation is being used for the
remaining quantities in (12). Focusing on the input/output variables, we can rep-
resent the dependence of yi on ui (i = 1, 2) in the form y1 = k1(u1), y2 = k2(u2)
where k1, k2 are referred to as the corresponding characteristic functions. Clearly
k1, k2 are monotone if both subsystems in (12) are monotone. Then, upon intro-
ducing positive feedback in (12) by setting:

u2 = y1 , u1 = y2 (13)

it can be shown that, under rather weak transversality assumptions on the char-
acteristic functions of (12), the resulting coupled system (12), (13) is bistable. We
refer to ([20]) for a detailed description of how these ideas can be used to obtain
bistability for a system related to the MAPK cascade.

6 Concluding Remarks

In this note we have attempted at providing a short overview of results concerning
multistability in biochemical cascades. More precisely, we have recalled conditions
that enable us to ensure, or to discard, the existence of multiple stable steady
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states for systems of nonlinear differential equations that model chemical net-
works known to be instrumental in a number of physiological functions. Actually,
the availability of different stable equlibria is related to the switching properties
of those networks, by means of which different biological responses can be elicited
as a result of external inputs.

A picture that emerges from the facts recalled in the previous Sections is that
a dichotomy can be observed between injectivity (the existence of at most one,
possibly stable, steady state) and multistability. As it turns out, injectivity is
shown to hold under loose conditions of coefficients for large classes of systems,
provided that their internal structure meets some requirements. On the other
hand, to obtain multistability (and in particular bistability, the case most often
addressed in the literature) rather tight assumptions need to be met, both in
terms of structure and parameter values. It is tempting to guess that, out of an
extremely large set of possible chemical networks to play with, evolution seems
to have selected those which operate according to particular internal structures,
and remaining within precise parameter regions. We have just mentioned one such
structure which is prone to sustaining bistability, that of monotone I/O systems.
It would certainly be interesting to know which other types of circuits (if any)
would also led to multistability when suitably interconnected. Needless to say,
finding precise molecular mechanisms supporting the functioning of those models,
remains always a key issue. The same can be said about procedures to estimate
in detail parameter ranges at which multistability appears. The latter question
represents a challenge for experimentalists and theoreticians alike. A further in-
teresting question is that of externally tampering (for instance, by therapeutic
means) with some of the circuits integrated in a given network, to create, shift
or eliminate stability points. In this way one could produce, enhance or dispense
with particularly relevant solution behaviors. Such issues are currently been dealt
with, and are likely to receive increasing attention in the future.
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