Iteration of quadrilateral foldings

Starting with a quadrilateral $q_{0}=\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$ in the euclidean plane, one constructs a sequence of quadrilaterals $q_{n}=\left(A_{4 n+1}, \ldots, A_{4 n+4}\right)$ by iteration of foldings, that is $q_{n}=\phi_{4} \circ \phi_{3} \circ \phi_{2} \circ \phi_{1}\left(q_{n-1}\right)$, where the folding operation ϕ_{j} replaces the vertex number j by its symmetric with respect to the opposite diagonal.

We study the dynamical behavior of this sequence. In particular, we prove that: - The drift $v:=\lim _{n \rightarrow \infty} \frac{1}{n} q_{n}$ exists.

- When none of the q_{n} is isometric to q_{0}, then the drift v is zero if and only if one has $\max a_{j}+\min a_{j} \leq \frac{1}{2} \sum a_{j}$, where a_{1}, \ldots, a_{4} are the sidelengths of q_{0}.
- For Lebesgue almost all q_{0} the normalized sequence $\left(q_{n}-n v\right)_{n \geq 1}$ is dense on a bounded analytic curve. However, for Baire generic q_{0}, the sequence $\left(q_{n}-n v\right)_{n \geq 1}$ is unbounded.

