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1 Introduction

Since 1994 the authors have been involved in the fascinating attempt to recall
to life a very important Italian art fresco (A. Mantegna, Cappella Ovetari,
Chiesa degli Eremitani in Padova), fragmented in thousands of pieces by an
Allied bombing in the Second World War (1944) [15,16,10]. Recently a digital
cataloging of the fragment images made possible to count their exact number
(80735). The distribution of the areas shows that most are relatively small,
with an average surface area of 5-6 square centimeters, a total area of 77
square meters versus an original surface of several hundreds square meters.
These a priori data demonstrated the lack of continuous fragments for any
given fragment and makes extremely improbable that any reconstruction will
be successful using methods based on the outline shape of the fragments.
There is no information on the possible location of the pieces on the huge
original surface and it is unknown also the angle of rotation with respect to
the original orientation. Some fairly good quality black and white photographs
from between 1900 and 1920 exist, but they suffer from non-linear spectral
distortion. A more detailed and complete description of the problem can be
found in the contribution [25].

These facts impose that any feasible computer based solution for a possible
recomposition by comparison of the fragments and the fresco digital gray
images must be

e fast, because of the huge number of fragments and original surface of the
fresco;

e robust, because of the strong noise presence and intrinsic differences between
the images, due to the damage of the bomb and the different photographic
techniques;

e accurate, because of the fairly small dimensions of the fragments;

e translation-rotation invariant, because of the unknown original location and
orientation of the fragments.

The request of a fast algorithm excludes the implementation of any com-
parison pizel-by-pizel and suggests that methods based on (compressed) se-
ries expansions can be more efficient. Besides other classical expansions, like
Laguerre-Gauss [7] or Zernike polynomials [18] (fairly difficult to implement
numerically), Circular Harmonic decompositions have found a relevant role in
pattern matching because of their rotation invariance (self-steerable) proper-
ties and their effective and successful optical implementations [3-6]. In this
paper, we want to present a digital/numerical implementation of compactly
supported Circular Harmonics and an effective 2D pattern recognition algo-
rithm, based on these discrete expansions, which fulfills all the required prop-
erties listed above. The algorithm and its performance are described in detail
and illustrated by examples and data from the experimentation on the fresco



real problem. Because of the huge database of patterns and the large scale di-
mension, the results of the experimentation are relevant to describe the power
of discrimination and the efficiency of such method. Other problems can be in-
terpreted in such a picture: experiments in character recognition, motion field
detection and local rotation registration have also given very good results.

In literature other kind of expansions have been presented as possible tools for
pattern matching: to cite some, 2D (Circular Harmonic) wavelets [1,2,24] and
multiscale self-steerable pyramid decompositions [22,23]. Even if they have
given very interesting and promising results on small scale and local registra-
tion problems, it is still difficult to implement algorithms where a reasonable
and feasible compromise among speed, robustness and location-rotation reso-
lution can be realized on large scales.

The paper is organized as follows: Section 2 illustrates the Circular Harmonic
expansions and their properties. In particular, it is shown that the moments
constructed by correlation of a signal with the Circular Harmonic system is
a total information that can be used then for a complete comparison with
an other signal. We discuss the discrete implementation of Circular Harmonic
expansions by sampling and we will show that, up to limit the system to a
suitable and computable finite number of elements, one can efficiently cal-
culate the moments and preserve with optimal approximation completeness,
local orthonormality and self-steerability also in the discrete domain. Section
3 illustrates the pattern recognition algorithm and its complexity is discussed
with respect to a reference optimal method. In Section 4 numerical results and
stability in real cases are presented and compared with the reference optimal
method. An appendix collects notations and the relevant result in aliasing
error analysis in sampling theory we have used for the efficient discretization
of the Circular Harmonic system.

2 Discrete compactly supported Circular Harmonics

Compactly supported Circular Harmonics (CH) arise as natural solutions of
the Laplace eigenvalues problem on a disk under Dirichlet conditions [27],
and they are related to relevant physical problems with rotation invariant
symmetries. In fact, since the Laplacian commutes with rotations, CH are
also eigenfunctions of any rotation operator.

We denote in the following L?(2) the Lebesgue space of p-summable functions
on  C R?. Assume €, C R? is a disk of radius a > 0. The system of Circular
Harmonic functions on €2, is defined in polar coordinates by

Cm,n

emm,a(T,0) = Jm(jm,nr/a)eima, meZ, néeN, (1)
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where J,,,’s are Bessel functions of the first kind of order m € Z, (jimn)nen is
the sequence of their positive zeros [26], and ¢, , is a normalization constant.
We summarize their properties:
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Fig. 1. Compactly supported CH

i) CH constitute an orthonormal basis for L?(£,) [27], i.e.,

(em,n,a.a em',n’,a) = /em,n,a(x)em’,n’,a(l')dx = é(m,n),(m’,n’)a
Qq

being f(z) the complex conjugate of f(x), and solve the Laplace eigenvalues
problem:

Q
Ae'm,n,a, = - (j";’n)Q €m,n,a» (3)

where H}(€),) is the Sobolev space of functions vanishing on the border
082,.

ii) CH are characterized by special frequencies: in fact, each ey, 5, o is dominated
by a particular set of frequencies related to j,,,/a. The Fourier transform



of a summable function f on R? is

Ffw) = [ fla)e i,
R4

where (-, -)ga is the scalar product in R?. In particular, the Fourier transform
Femna € L'(R?) and has quite fast decay (Fey q(r,0) ~ r75/2, see Fig. 2
and [27,10]). This property is relevant to ensure that CH produce relatively
small aliasing errors [21] once they are sampled as we will discuss in the
following. In particular, the CH basis minimizes aliasing errors among all
the possible Fourier-Dini bases which are solutions of the Laplace eigenvalue
problem (with Neumann conditions) [27,10], because in general the latter
have slower Fourier transform decay.

iii) Let R, be the rotation operator of angle «, i.e., in polar coordinates R, f(r, 0)
f(r,0 4+ «), for all functions f on €,. Then CH are eigenfunctions of any
rotation operator (self-steerability) [5]

_ _ima
Raem,n,a =€ * Em,n,as (4)

for all m € Z,n € N, and this property is used to detect mutual angles in
comparisons of digital images, as we will discuss in the following.

2.1 Analysis and synthesis of an image by CH expansions

We describe in this section how moments computed by correlation with respect
to CH can be used for a complete analysis of 2D (digital) signals.

For all images f € L*(R?), the moment (or Circular Short Time Fourier
Transform (CSTFT) [9,17])

fCSTFT(f) (.T, m, TL) = <f7 em,n,a(' - $)>L2 = /f(y)em,n,a(y - x)dy, (5)

localizes f at the space point z € R? and at the frequency j,, ,/a. As we write
7 > 0 we mean 7 = (7,...,74) € RL and we denote det(r) = 7...74. The
multiplication of two vectors z,y € R? is assumed componentwise z -y =

Ty = (l'lyl; ---,ﬂﬁdyd)-

There exists 7 = 7(a) > 0, depending on a > 0, such that R? = J,cza 7k + Qq-
Therefore, by application of [11, Theorem 1] the sequence (€mn o — 7))k mn
is a global frame for L?(R?) (see [8] for an introduction on frames) generated
by the local orthonormal basis (€,5,0)m,» on the disk. One can invert (5) by



Fig. 2. Absolute value of the Fourier transform of a compactly supported CH. The
dominant frequencies jp, ,/a and the fast decay are visualized.

using the canonical dual frame (Eppak)mnk [8,11,14]:

f= Z Fesrrr(f)(Tk,m, n)gm,n,a,k (6)

k,m,n

This means in particular that the sequence (Fosrrr(f)(Tk, m,n))kmn is a
complete information on the signal f and then can be used for a complete
comparison with an other signal.

We show in the following how to compute the Fosrpr in a fast and accurate
way and how to discretize formula (5) for use in applications. For functions

(on continuous or discrete domain) f,g,h we define I(h)(z) = h(—z) the
involution operator and with f % g the convolution operator of f and g.

It is not hard to see that Fosrrr(f)(7k,m,n) = (f * I(emna)) (Tk). Hence,
one can consider to implement an FFT (Fast Fourier Transform) convolution
at the resolution 7 to compute Fesrpr(f)(Tk, m,n). This choice produces the
following approximation:

Fester(f)(Th,m,n) = det(t) Y f(T])emma(T(l — k) (7)

lez?

As we have fixed 7, we will write /2 instead of [2(7Z%) the space of discrete
signals with finite energy and we will suppose it endowed with the scalar

product (f, g)p = det(7) Xpeza f(Tk)g(Tk). If f is a discrete signal then we

~

will denote with F f or f also the discrete Fourier transform of f.

Observe that (f,emna(- — 7)) = det(7) Yieze f(TDemma(T(l — k)). It is
known that scalar products are preserved under suitable sampling whenever



the signals involved are band-limited. Thus in such case formula (7) is exact
and no approximation is appearing.

In the case of non band-limited signals, aliasing errors [21,12] propagate to
scalar products and perturb the approximation. In order to minimize the ap-
proximation error in (7) one should consider only those Circular Harmonic
functions for which the aliasing errors are small. In Appendix, Theorem 3
describes how to measure aliasing errors of a function f by suitable function
space norms of the “tails” of the Fourier transform of f and how to optimize
the approximation (7) for all possible choices of f: one should select those CH
which minimize this norm (as the measure of their aliasing error). In practice,
one discretizes the infinite frame (€, 54 (-—Tk))mn i by sampling it on 7Z? and
by selecting only a finite number of elements which guarantee a good approx-
imation. This selection produces a finite sampled sequence (the “*” stands
for “sampled”) (e}, ,, o(- = Tk))k,m, that is again a global (discrete) frame for
I2(TZ2): hence no truncation error occurs when one wants to reproduce even
a discrete signal from (7). By formula (27) one can show, numerically but also
analytically [10], that for any precision ¢ > 0 and all radius a > 0 there exist a
resolution 7 = 7(a) > 0 and a frequency set ®, . of couples (m, n) such that for
(m,n) € ®,, the corresponding e, n, , minimizes the aliasing error up to €. In
order to select a suitable method in concrete cases, we observe that the images,
divided between channels (RGB or gray levels) can be considered as functions
with real values. Since for any real signal h, (h,e_na) = (—1)™(h, €mna)
[26,27], the terms with m < 0 of the ®,. are redundant and maybe deduced
from that part of ®,, with m > 0. Hence, we avoid consideration of e_, ,, o
for m > 0, obtaining a reduction by half of the calculation time.

Because of the peculiar shape of Fey, 4, i.e., absolute radial and dominant
frequencies at j,, »/a and vanishing residual tails (Fig. 2), practically one can
select with good approximation (m,n) € ®,. whenever j, , < 2”7“51/ 2 In Fig.
1 and 3 we show some examples of an admissible frequency set ®, .

N BN O
00000OGOOS

Fig. 3. Example of the set ®,. described by jn < 2%%/2 for e = 0.1.

Therefore, for a suitable choice of € > 0, one can in particular ensure that



e The sequence (e}, ,, ) (mn)e®, . 15 almost orthonormal,

Ot ) (mom) = (em' m',0) Emom,a) & <e:n’,n’,a’ 6fn,n,a>l2- (8)

As a consequence the finite sequence (e}, ,, ,)(mn)ce, . i linearly indepen-
dent and #®,. = #%Qq, then (e}, . ) mm)ce,. is a local frame for *(€2)
with (€5, , o(- = Tk))k,(mn)ce, . as respective discrete global frame for I?(77Z?)
[11,14], and the discrete moments (7) are again a complete information.

e The discrete compactly supported CH approximatively satisfies (4) in weak

sense. This means that, for any R, rotation operator, one has

<(Raf)57 efn,n,a)lz ~ <Raf: em,n,a) =

= (f, Rammna) = €™ (f*, €} )2

9)

3 2D pattern recognition algorithms

We illustrate in this section an efficient pattern matching algorithm based on
the CH-moments Feogsrrr. We refer the properties of the method directly to
the application on the computer-based recomposition of frescoes, where one
would like to localize the images of some fragments on an “old” picture of
the fresco prior to damage. However, the resulting method can be efficiently
applied in other situations where one wants to detect a small particular in a
larger image up to mutual rotation.

Digital images can be represented by matrices and we consider all the following
signals sampled at some fixed resolution 7 (without loss of generality one can
assume 7 = 1) and we identify them with their sampling matrix. According
to the considerations mentioned above, an image supported on a discrete disk
of radius @ > 0 can be represented on a finite dimension space, identified
by the set ®,.. This space has an almost orthonormal basis consisting of
sampled eigenfunctions of rotation operators (8). The choice of this space also
guarantees that the passage from the continuous to the discrete domain is
(almost) error free in angle resolution (9).

3.1 Matching coefficient up to rotation

An ideal method of comparison is realized by rotating one image with respect
to the other and by detecting the rotation angle which performs the best
possible matching, in some measure. Given a CH expansion of an image, one
can rotate it just multiplying the moments in a suitable way by eigenvalues



Fig. 4. Fragment of the Andrea Mantegna’s fresco, bombed in 1944, over the corre-
spondent old gray photo dated to 1920.

of the rotation operator (9):

f = Z fm,nem,n,a, RBf ~ Z eimofm,nem,n,aa (10)
m,n m,n

Y

where fin = (f, émn.a)2- The approximation symbol “a” is due to the alias-
ing errors which are in practice negligible, as we have discussed in the previ-
ous section. Given two images f and g (defined on a disk) one can define the
matching coefficient of the signals f and g, depending on the rotation, given
by:

<R9fag>l2 1 im@ -
M ) 70 = ~ m,nYm,n- 11
(£:9:9) = 1FLgls ™ Talials 2= ¢ Jmnm 1

This formula is equivalent to measure the angle between ﬁ,‘% and ﬁ as
unitary vectors in the finite dimension CH space, indexed by the set ®,..
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Fig. 5. |M(f,g,0)| for 6 € [0°,360°). The maximum is realized at o = 40°

The angle « such that [M(f, g, )| = maxgejoon |M(f, g,0)| is an optimal an-
gle which realizes the best matching (Fig. 5). Let us call this strategy optimal
matching procedure. In fact, 0 < |M(f,g,0)| < 1 and it is |[M(f,g,0)] = 1
if and only if f = Ag up to rotation of #, and A > 0. Hence the match-
ing coefficient is independent on contrast in the sense that if A > 0 then

M(\f,g,6) = M(f,g,0) [4].

3.2 Computational cost

A direct computation of the maximum of M(f,g,6) is quite expensive to
achieve good accuracy, because one needs high sampling rate in angle resolu-
tion. Hence, it is time consuming and it requires the use of much memory to
store all coefficients involved in formula (11) for all the possible positions and
angles.

In order to establish a comparison of efficiency with the novel algorithm we are
going to illustrate later in this paper, let us estimate here which is the com-
putational cost of the optimal matching procedure. Assume that the sampled
Circular Harmonic functions and that the moments g, , for all the positions
are pre-calculated. Denote with C(T") the number of complex operations to
compute the quantity I'. Because of (8) if (m,n) € ®,. then one can estimate
m < 2a and n < a and #®P,. ~ a®. As a consequence, it is not difficult
to see that C(fmn) ~ ma® and C(M(f,g,0)) ~ 3a®. One should multiply
this last factor by the number N,, of rotations to be considered, as a rel-
evant constant, and then apply an optimization to detect the best angle a:
the complexity of the Quick Sort algorithm is O(N log(N)) and hence, one
has C(M(f, g, ) ~ 3Npot0? + @gs Nyot 10g(Nyor). Since the calculation should
be executed for all relevant positions of a given h X w reference image (one
should consider all the positions which are in the interior of the reference im-
age excluding a frame of width a), one finally achieves that to compute the

10



best position one should execute c.a.
ma* + (h — a)(w — a)(3Nyora? + s Nrot 10g(Nyot))+

+ags(h —a)(w — a)log((h — a)(w — a))
complex operations. Observe that for a given radius a > 0, to achieve an

accuracy comparable with the resolution of the sampling lattice, a suitable
choice of N, is ~ 27a.
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Fig. 6. The figure shows a sheet from the digital catalogue of fragment images.
In particular a disk portion is extracted from a fragment to be processed for the
localization.

3.3 The circular sum procedure of computation of M(f,g, c)

We want to show here a new procedure of calculation of the matching coeffi-
cient, invariant under rotation, by means of a sequential (memory saving) and
faster (FFT based) comparison of CH-moments where the angle is detected
by implicit computations. We will show that using this procedure the compu-
tational cost can be dramatically reduced in the range of parameters used in

11



concrete applications. We pretend also that this novel method of comparison
can be as effective and robust as the ideal one, at least for a reasonable class
of cases.

If f is a disk extracted from a fragment (Fig. 6), and f its image under rotation
by —a in such a way as to return it to its original orientation, then by (10)

.f% Z Z eimafm,n €m,n,a = Z fma (12)

where fr, = 3, €™ frun €mna and (myn) € ®,.. If g;; represents a disk
extracted around any position (7, ) of the fresco image G, we could write
analogously:

Gij = Zgi,;j, (13)

Where g:rt;’zj = Zn g:ﬁ],n em,n,aa g:ﬁ],n = <gi,j; em,n,a)lz ~ fCSTFT(G) (i,j, m, n)

In the following, we assume componentwise operations on the matrices. We
consider, now, a matrix F,, with same dimensions h x w as G with entries
consisting of zeros except for the entries representing f,,, translated modulo
h x w so that the center of the disk coincides with the left upper corner of G,
considered as the axes origin. As discussed in Section 2 we can execute a fast

comparison of the circular harmonics moments by convolutions and the use of
the FFT.

Let us denote F' = >, F,, and F}(k) = F,,(—k) modulo h x w, for k =
(i,7) € Z*. According to (8), we have:

(F':z *G)(Z,]) = <fm,gi,j>l2 ~

2,7 mao 1,J (14)
~ <fm: n’f)ﬂ ~ Zne fm,n(g"’l,ﬂ)-

It is well known that a convolution is equivalent to a multiplication in the
frequency domain

FH EFRG) (6, §) = (Fy % G) (i, 5)- (15)

Even if the ey, ,’s are the only totally rotation invariant components of the
expansion, we will define the matching coefficient computation without count-
ing the contribution of the projection on the ey, ,’s. In fact, these components
cannot be useful in order to detect mutual angles. Moreover, this choice makes
the comparison independent of brightness, since (¢, €mn,q) = 0 for any con-
stant ¢ > 0 and m # 0. Hence, using m > 0, one defines inductively the

12



procedure for an implicit approrimated calculation of optimal matching and
angle: at some m > 0, one assumes that a first determination of the optimal
angle, say a,,—1 & «, is given maybe by means of some calculations on pre-
vious coefficients v, = ), fkngfc”n ,k =1,...,m — 1. Then one computes a
next approximation/correction of the optimal angle using the next indepen-
dent complex vector v,,, just rotating back it of ay,_1, i.e., multiplying v,, by
e~Um=Dem-1 and setting o & qu, = arg(e”*MDem-14, ). An initial approxi-
mation from which to start can be deduced by v; whenever f and g;; can be
“close enough” up to rotation. Formally this can be expressed by the following
procedure

k € N\{0} and z,v € C\{0}.
We consider the binary operator @, defined by:

1-k
z@kvzz—l—v(é) . (16)

For m € N\{0} and vy,...,v,, € C\{0} the circular sum of order m is the
operator @), defined recursively by:

Die, vk = v1, m=1

(17)
@2”:1 Vg = (@le—ll Uk) @m U, M > 1.

By induction on formula (17) one can easily show the following formal prop-
erties of the circular sum:

for m € N\{0} let v; = pi€e™®,....v, = pnpe™ € C\{0}, pr > 0 for all
k=1,.,m and a € [0, 27).

i) (Angle detection property) @, vr = € (XF; k) ;
ii) (Angle detection in presence of errors) If v,_1 = pp_i€"
Uy = prm€ M H0am) then

m t0am
@Uk: = e (wm—l + © Prm > y (18)
k=1

Sgn(We—1)™ 1

((m—l)a+éam_l ) and

where w,,_1 = ZZ’:_IQ Pr + eHam-1 Pm—1- As we will discuss in Section 4 this
last property ensures stability in angle resolution also in presence of strong
noise, see also Fig. 11.

We are now ready to define the new procedure for computing the matching
coefficient.

13



Fig. 7. Some re-composed fragments are shown on the original background.

With the notation used above, we define the matching matriz of f and G by

M(F, G) = 1 éna ”fk”? f_l(F\l:é)7 (19)

YA AT

where || fi||2 is the (discrete) norm of fy, (Ilg#7||2)s.; is the matrix of the norms
of g;7 and m > 0 is the maximal integer for which there exists n € N such that

(m,n) € ®,,. The circular sum in (19) acts componentwise on the matrices.
For each point (7, j) of the image GG, the matching matrix returns the matching
coefficient given by 0 < |M(F,G)(i,7)| < 1, measure of the correspondence

with the fragment up to relative rotation. In fact, if we suppose there exists a
position (z,7) in G, such that:

g5 =1, (20)

from (14-15) one has

A —

FYFEG)(3,7) ~ e*|| fill2, (21)

14



for each k. Hence, by the property (i) of the circular sum, we have:

= tko

We deduce that a necessary condition, so that a position (7, ) is the original
one of the fragment, is:

|M(F,G)(i, 5)|

S (23)
arg(M(F,G)(i,7)) ~

Up to the negligible aliasing errors, the condition is sufficient, since we have
shown that (Fosrrr(G)(4, j, m, n))ijmn is @ complete information.

Of course one can adaptively construct a subset of ®,. depending on the par-
ticular fragment to compress the information used in the calculation of (19), re-
ducing much the computational cost. In practice we have verified that for gen-
eral fragments most of the energy is concentrated in the lower m-components

m = 1,2,3,... that can be already enough to have a quite discriminating
comparison.
12.5 T
12 et
2115
S
A 11}7
10.5 //

500 1000 1500 2000 2500 3000
a h=w

Fig. 8. The computational cost of the optimal matching procedure (dashed curve)
and of the circular sum procedure (continuous curve) are shown. With respect to
increasing values of radius 6 < a < 90 on the left and fixed size h = w = 1024,
and with increasing values of the dimensions 512 < h = w < 3000 and fixed radius
a = 30 on the right. With radius a =~ 20 and size h = w = 1024 the cost can be 50
times smaller.

3.4 Computational cost and comparison with the optimal matching procedure

Since @, and the norms I gfc’j 2 can be pre-calculated, the computational cost
of the matching matrix depends essentially on the fragment quantities, the

15



correlation and the cost of the circular sum. By computations in Section 3.2
one has

o C(Fy) ~ m%a® + ma?;

e since F is zero except for 2a rows/columns one can compute Fy in C(F}y) ~
2a-appr(hlog(h) 4+ wlog(w)) complex operations, by applying the 1D-FFT
firstly along the rows and then along the columnuns;

C (]/4_’; G) ~ h w;

C(F (Fy )) ~ agprh wlog(h w);
CUIAI) ~ 20

C(DiLy vk) ~ MQ

From these estimates one shows that
C(M(F,QG)) ~ 2a(r’a® + ma® + a - appr(hlog(h)+

+wlog(w)) + h w + a2 pp h wlog(h w) + 2a) + (7a + 2a?) h w.
One should add to this the execution of a Quick Sort on the full matrix to
compute the best position. In the range of parameters in concrete applications
(usually 6 < a < 30 and 512 < h,w < 3000), one can show that the computa-
tional cost is much less then that required by the optimal matching procedure
(see Fig. 8).

With one fast calculation one can deduce both the matching coefficient and the
rotation for any position of the fresco. This method can be applied in every
case where one wants to localize a detail in a big scene up to relative rotation,
brightness and contrast and it was also effective with very noisy data, proving
its robustness (see following section).

4 Stability and numerical results

4.1 Pattern matching without noise

Extracting from a digital image G an auto-fragment f, i.e., a disk portion of
a digital image which is rotated with respect to its original orientation, and
applying the matching matrix M (F,G), one can rearrange the entries of the
matrix by decreasing values of the matching coefficient |M(F,G)(i, j)|?. One
wants that the first positions indicate the original position. Moreover, one
would like also that the best positions can have matching coefficients clearly
much bigger (discriminating power) then the others (wrong positions). Let
us consider the function, say it matching curve, which maps each position
into its matching coefficient, rearranged by decreasing values of the matching
coefficient.

16
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Fig. 9. Four best positions of a series of 5 auto-fragments are shown. The sample
auto-fragments extracted from pictures of the fresco and rotated by —37° are listed
in the first column. In the second column the projection on the space 7, . and m > 0
of each fragment is presented. The last four columns show the best positions up to
rotation with respect to the matching coefficient the algorithm is able to detect.
They look very similar, but in fact they differ by the minimal displacement.
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031 e

Fig. 10. Matching curve of an auto-fragment for the 100 first best positions. Each
position is mapped into its corresponding matching coefficient.

Figures 9 and 10 show calculations of best positions applied on auto-fragments.
For all tests that have been applied on auto-fragments extracted from 1000 x
1000 pixels random images, the method was successful in the 100% of the cases,
in the sense that the first best position on the 1000000 possible competitors
has always coincided with the original and the rates of decay in the first 10
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positions were of order 1/5. Moreover, the calculation of the angle by means
of arg(M(F,G)(i, 7)) is also correct, up to small errors, fast decreasing with
increasing resolutions.

4.2  Real world cases: noise presence

In real world cases the comparison between images of the same object, but
actually taken in different technical and time situations, can be made very
difficult by presence of noise (or just by some strong differences as in the case
of the fragments damaged by the bomb) and the correct order in the matching
curve will be surely perturbed. We want to show now that the suggested
(rotation) invariant (23) is quite robust in real world cases. The circular sum
operator is responsible of the calculation of the matching matrix and one of
the essential ingredients of the proposed method. Property (ii) of the circular
sum is a specific and suggestive auto-correcting property: the errors d,, on the
angles at some k are compensated by the next term k + 1 of the circular sum.

Fig. 11. Angles error compensation by the circular sum auto-correcting property.
The straight line indicates the right angle and its length the right matching. A ran-
dom error is added on each single term of the circular sum. The matching coefficient
is reduced from 1 to 0.78.

One can make an analytic example in a very simplified case:

If v, = ek k=1,...,m—2,m and v,,,_1 = (M Detoan 1) it is not difficult
to show that for m large enough and 6, =~ 0

m
@ vy A € ((m -2)+ gam—1 4 e’i‘sam—l) } (24)
k=1

This compensating effect is quite desirable in order to stabilize the angle cal-
culation, while the reduction of the matching coefficient cannot be eliminated
(see Fig. 11).

Motivated by the fast computation of the matching matrix and by the shown
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Fig. 12. Distribution of localized fragments with respect to the matching curve rank.
The 75% of the localized fragments were found in the first 3 best positions and the
90% in the first 20. The total number of localized fragments is c.a. 800.

robustness, we have extensively applied the method on the real problem of the
localization of fragments of the huge Andrea Mantegna’s art fresco (“Stories
of St. James and St. Christopher”, 12 scenes of 15 m? each.). All fragments
have been already tested on three of the scenes of 15 m? and we have detected
the original position for 500-900 fragments on each. Some actual results are
presented in Figures 4,6,7,12. In the experimentation, the first 100 best po-
sitions returned by the algorithm were considered and discussed by human
operators. The calculation of a digitalized fragment of radius a = 10 pixels
(equivalent to 2 — 3 cm? real dimensions) on one scene of 3000 x 2400 pixels
(equivalent to 15 m? real dimensions) takes actually about 120 seconds with
a C/C++ implementation on a standard PC (AMD K7 Athlon 1 GHz, 500
MB RAM) with the FFTW library to compute discrete Fourier transforms.

4.8  Comparison with the ideal method in presence of noise

In this section, we want to compare the optimal matching procedure (Fig. 5)
with the “circular sum procedure” (Fig. 11). Figure 13 shows the two methods
in presence of noise: Montecarlo experiments of matching are applied on a
random pattern with respect to itself, affected by white noise of increasing
energy. In particular, the percentiles curves (0.05-0.5-0.95) related to matching
coefficient and angle are depending essentially on the signal/noise (S/N) ratio
and on the number of CH-moments used. For a fixed number of CH-moments
(typically about 100), the methods look equivalent for ratio S/N> 0.8 and
they start to have some significant different behavior only for ratio S/N< 0.8.
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Fig. 13. Matching and angle percentiles (5% — 50% — 90%) curves for the optimal
matching (left) and for the circular sum (right) procedures with respect to increasing
S/N ratio.

4.4 Increasing discrimination power

The algorithm returns a sequence of positions ordered by means of the match-
ing coeflicient. In fact, the results of the experimentation on the fresco prob-
lem show that, for the 90% of the cases, one can reduce the analysis of the
possible matching positions from A x w = 3000 x 2400 = 7200000 to the
first 20 best ones only (Fig. 12). We want to exemplify how the discrimi-
nating power can be improved. In fact, one can extract from a fragment

Fig. 14. Multiple disk selections extracted from the same fragment

more then one disk portion/selection. Given multiple sequences of best posi-
tions, maybe computed by the circular sum procedure on different selections,
one can keep only those positions which are respecting the original mutual
positions on the fragment and that have the same computed angle. Due to
the robustness in detecting correct angles, a fast constraint check applied on
the first 100 best positions returned by the circular sum procedure of the
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Fig. 15. The original position on the fresco of the fragment shown in Fig. 14

two selections of the fragment in Fig. 14 reduced the coupled possible posi-
tions to 1 only: p = (890,1183) and ¢ = (884,1189) with mutual distance
dist(p, q) = Vp? + ¢? ~ 8.48 (pixels) while the mutual distance of the original

selections (Fig. 14) is dist(sely, sely) = y/sel? + sel3 ~ 8.94; the calculated an-
gles are a; = 3.09 and a = 3.11 (radiant). Therefore redundant calculations
on a fragment ensure a very accurate detection of the original position of the
fragment (Fig. 15) with high discriminating power.

An other way to improve the discrimination power is to combine our method
with fast local registration [20] applied on the best positions returned by the
algorithm. The list can consequently be reordered. In fact, fast registration
algorithms based on optimization methods works when the images are already
“close enough”. Because of the robustness and the accuracy in angle detection,
the fractional rigid rotation registration can be efficiently realized by using our
algorithm. On the other hand, two digital images of the same object cannot
in general be sampled exactly on the same grid. Some fractional shifts (or
more complex elastic deformations) are usually present. One can simulate this
effect by considering an image at resolution 7, shift it of one pixel, for example,
in the right direction, and then scaling both, the original and the shifted, to
resolution 27. The resulting images are representing the same object but in fact
they differ of a fractional shift. Table 1 compares the output of our algorithm
in a real case with its optimized version by local shift registration.

Match. | Angle | 'Y | X Match. | Angle | Y | X
0.993 | 0.232 | 67 | 70 0.996 | 0.228 | 67 | 70
0.920 | 0.193 | 66 | 70 0.982 | 0.212 | 66 | 70
0.889 | 0.244 | 68 | 70 0.956 | 0.231 | 68 | 70
0.816 |-2.904 |71 |75 0.940 | 0.233 | 67 | 69
0.795 | -2932 | 72 | 75 0.934 | 0.224 | 68 | 69
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Tab. 1. Matching, rotation angle and position computed on the same fragment be-
fore and after the fractional shift registration. In the optimized situation (right)
by local registration one can appreciate the presence of a cluster of positions with
matching coeflicients very close and quite high. One can see that the first positions
are preserved (with an improved matching and reduced variance in the angle com-
putation), while the fourth and fifth incorrect positions are substituted by minimal
displacements of the correct position.

Appendix
Notations and conventions

As we write 7 > 0 we mean 7 = (71,...,74) € Ri; let we set also w =
(wy, ..., wq) where w; = C1;7 ' and C > 0 (C depends on the definition of
the Fourier transform: usually C = 1 or C = (2m)7}), det(T) = 71...14 and
Quw = I, wi[—3%,1). The multiplication z -y := zy := (T1y1, ..., Tayq) of
two vectors z,y € R? is assumed componentwise. If f € S' (R4) (the space of
temperate distributions), forF (f) stands for the Fourier transform of f. In
particular, if f is summable function then

/ f —2m(w x Rdd$

where (-,-)ge is the scalar product in R¢. We denote L?(R?) the Lebesgue
space of square summable functions. We consider the functions or distributions
Ny = f on Q, and fi; = 0 identically on R¥\Q,, £ = f- fis (the “tails” of
f out of @) and 7y, e; their respective inverse Fourier transforms. As we
have fixed 7, we will write /2 instead of 1?(7Z%) the space of discrete signals
with finite energy and we will suppose it endowed with the scalar product
(f,9)r = det(1) Cgeza f(Tk)g(Tk). If f is a discrete signal then we will denote
with Ff or f also the discrete Fourier transform of f. For any function (on
continuous or discrete domain) h we define h*(x) = h(—z) and I(h) = h* the

involution operator and with f % g the convolution operator of f and g.
Error Analysis in Sampling Theory

For the sake of completeness, we recall some of the results in [12] for (aliasing)
error analysis in moment integration.

In particular, let us introduce some of the properties of Wiener amalgam
spaces we will use in the following without introducing them in full generality.
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For a more complete description of these spaces see [19]. We use Wiener amal-
gam spaces because of their important capability of highlighting the relations
between continuous and discrete behaviors of functions under the action of
sampling.

Given a relatively compact set 2 C R?, a Partition of the Unity ¥ = (3 )ezd,
such that supp(¢x) C 7k + €2, a Banach space of functions (B, || - ||z) such
that

|lvwflls < C|flls, Vf € B,

and w a discrete weight function, we define the Wiener amalgam space as:
W(Z,B,1) ={f € 8": fyr € B Vk € Z (| fsll p)rena € 1L (Z%)}.

Moreover, one can define the norm:

1/q
IfIW (B, I3)]l = (Z ||f¢k||qu(k)q) .

kezd
With this norm the space (W (¥, B,12),| - |W(B,1%)]|) is a Banach space.

When the weight function w is assumed moderate, that is w(z+y) < w(z)(1+
ly|)* for all z,y € R and some s > 0, then one can show that W (¥, B, 1) =
W (B, %) does not depend on the particular ¥ taken.

Theorem 1 (Useful properties)

i) If Bl,. C B, and 1% C 1% then W(B',1%) C W(B?,12) continuously;

i) F(W(LP,19)) ¢ W (LY, IP") continuously, for 1 < p,q <2, 1/p+1/p' =1
and 1/q+1/q¢ = 1.

The aliasing error [21] can be measured as the (Wiener amalgam) norm of
the “tails” Fes of the Fourier transform of a function f and it stands for the
uncertainty one has in identifying the function defined on a continuous domain
from its samples on a regular or irregular set of nodes. One can consider alias-
ing errors as an estimate of the ambiguity with which one manages functions
or samples. From the Whittacker-Shannon theorem is immediate to show that
for all f € L> N C° and any 7 > 0 such that f,z« € *:

f(z) = Z (f(tk) —efp(Tk)) H sinc(Ti_lxi — ki) +e5(x). (25)

kezd i=1

The quantities £ are the uncertainty on the reconstruction of f directly from
its samples. In fact, for band-limited functions £ = 0 and formula (25) reduces
to the well known Whittacker-Shannon theorem. In particular in L?*(R¢) the
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reconstruction ambiguity on functions propagates to their scalar products as
we will show in the following results.

Lemma 2 One has the following properties:

i) The identity is continuous from W (C°, %) to L*>* N C°, i.e. Vf € W(C°,1?)
3 C > 0 such that ||f||. < C||fIW(CO,1?)||;

ii) For each 7,0 <7 < 19,3 Cy > 0, not depending on the resolution, such
that Vf € W(C% 1) || firzallie < Coll FIW(C° ).

Theorem 3 For f,g € L>NC°, assume Ff, Fge W(L?*1') and 7 > 0 fized.
Then f,g € W(C°,1%), and we can approzimate the L*—scalar product of f
and g as follows:

|<fa g>L2 - <.f\TZdag|TZd>l2| <

(26)
< Cillf1l - llegll + Collgll - llell + Cslies Il - llegll-

where the norms on the right side are taken in W(C°, [?).

PROOF. Observe that, by Lemma 3 ii), f and g are such that f,z« €
?(tZ%and gz« € *(1Z%) for all 7 > 0. By using (25) it’s easy to show
that it holds the following inequality:

|<fa g>L2 - <f|7'Zd: g|7'Zd>l2| <

< llesllellglle + llegllellflle + llesllelleglle + llefllz2le sl - (27)

(use the orthogonality of the sequence ([T%, sinc(7; 'z; — k;))peze and the
Cauchy-Schwarz inequality). It will be enough to realize that Fe; and Fe,
are in W (L? 1), hence by ii) of Theorem 1 also ¢; and ¢, are in W (C°,[?)
and apply the previous i) and ii) of the Lemma 2. This concludes the proof.
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