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Abstract

Given two isospectral not isometric manifolds, we construct a new
couple of such manifolds as the total spaces of two Riemannian sub-
mersions with totally geodesic fibers isometric to the given ones and
of basis any other given manifold. By iteration, we obtain families of
isospectral not isometric manifolds.

1 Introduction

We shall assume, in this paper, that all the manifolds are connected,
compact and boundaryless. The spectrum of a Riemannian manifold
(M, g) is the sequence of the eigenvalues of the Laplace-Beltrami op-
erator ∆M = ∆(M, g) acting on C∞ functions defined on M :

(1) Spec(∆M ) = {0 = λ0 < λ1 ≤ λ2 ≤ · · · ↗ +∞}

each eigenvalue is repeated according to its multiplicity, which is finite.
From the definition itself, it follows that two isometric manifolds

are also isospectral , but the converse is not true, that is to say there
exist isospectral but not isometric manifolds. The first example of such
manifolds was given in 1964 by J. Milnor [9] with two 16-dimensional
flat tori. After him, several examples was produced by many mathe-
maticians. A fundamental contribution in the isospectrality problem
is due to T. Sunada in his famous paper [12] in 1985. Subsequently,
the problem was: does isospectrality imply at least local isometry?
Also the answer to this question is negative, the first counterexamples
in this sense was given by C. S. Gordon, D. Webb and S. Wolpert in
1992,[6]. For a survey on isospectrality, see for instance C. S. Gordon,
[5].
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Inspirated by the paper [3] of G. Besson and the first author, we
illustrate a general method to build up, starting from two isospectral
not isometric manifolds, new couples of such manifolds, obtained as
total spaces of Riemannian submersions over any basis manifold, with
totally geodesic fibers isometric to the two manifolds considered at
the beginning. The iteration of this process allows to build up, on
any basis manifold, a couple of towers of isospectral not isometric
manifolds of higer and higer dimensions: this justify the title of the
paper.

In section 2, the preliminaries are presented and it is stated the
main theorem (2.1) to construct the first couple of isospecral not iso-
metric manifolds; the proof of this theorem is performed in section 3.
We end by illustrating how to build up the towers and by showing
that Sunada’s examples are suitable for this construction.

2 The main theorem

Let (B, j), (F, gF ) be two Riemannian manifolds of dimensions n and r
respectively, and let G be the (compact) Lie group of the isometries of
(F, gF ). Consider the fibration π associated to the principal bundle p :
P −→ B of structural groupG on the basisB with fibers diffeomorphic
to F :

P × F diag−−−−→ M = P ×G F

pr1

y π

y
P

p−−−−→ B

where pr1 is the projection on the first factor, and diag is the diagonal
action of the group G on the product P ×F . Recall that G acts freely
without fixed points on the right on P and B = P/G. Moreover G
acts freely without fixed points on P ×F by the diagonal action. The
quotient of P × F by diag is a (n+ r)-dimensional manifold, denoted
P ×G F ; in the sequel we shall write briefly M for P ×G F . It is well
known that the fibration π : M −→ B is a submersion with totally
geodesic fibers, see S. Kobayashi and K. Nomizu [8], vol. I p. 54 and
B. O’Neill [10].

Choose a suitable biinvariant metric on G, this gives a Riemannian
metric on P which makes the projection map p a Riemannian sub-
mersion with totally geodesic fibers isometric to F , see J. Cheeger[4].
The product metric on P × F pass to the quotient and it gives a
Riemannian metric g on M = P ×G F . In this case all the fibers
Fx = π−1(x), x ∈ B, are regular r-dimensional submanifolds of M ,
and they, endowed with the metric gx induced by g, are isometric to
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the model fiber (F, gF ), see B. O’Neill [10], R. Hermann [7].
With respect to the Laplacians, L. Bérard Bergery and J. P. Bour-

guignon introduce in [1] a decomposition of ∆P as a sum of two op-
erators:

(2) ∆P = ∆h
P + ∆v

P

the so called horizontal and vertical Laplacians, corresponding to the
natural decomposition of the metric. Namely, the vertical Laplacian
is defined to be the operator

(∆v
P f)(x) = (∆Px(f �Px)) (x)

where Px is the fiber of p through x ∈ B; in other words, ∆v
P is the

Laplacian of the fibers of p. The operator

∆h
P = ∆P −∆v

P

is the horizontal Laplacian. In general, these two operators are not
elliptic, however they have discrete spectra and their eigenvalues have
finite multiplicity. When the fibers are totally geodesic, as in the case
under consideration, vertical and horizontal Laplacians commute then
the eigenvalues of ∆P are (not all) the sums of the eigenvalues of each
of them. The eigenvalues of ∆h

P are in substance the ones of ∆B, and
all of them appear in the sums; we shall see later that the eigenvalues
of the vertical Laplacian do not take part in our problem.

Consider now two Riemannian manifolds (F1, gF1), (F2, gF2) with
isometry groups G1 and G2 respectively. The previous construction
gives two Riemannian submersions

π1 : (M1, g1) −→ (B, j) and π2 : (M2, g2) −→ (B, j),

with totally geodesic fibers isometric to (F1, gF1) and (F2, gF2) respec-
tively:

P1 × F1
diag−−−−→ M1

pr1

y π1

y
P1

p1−−−−→ B

P2 × F2
diag−−−−→ M2

pr1

y π2

y
P2

p2−−−−→ B

The main result of this paper is:

Theorem 2.1 Let (B, j) be any Riemannian manifold, and let (F1, gF1),
(F2, gF2) be two isospectral manifolds, and assume that their isometry
groups G1, G2 are isomorphic as abstract groups. Then the manifolds
M1 = P1 ×G1 F1 and M2 = P2 ×G2 F2, endowed with the induced
metrics g1 and g2, are also isospectral.
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3 Proofs

In the proof of 2.1, an important tool is the theory of complex irre-
ducible unitary representations of groups.

Lemma 3.1 Two isomorphic compact Lie Groups G1, G2 have the
same complex irreducible unitary representations.

Proof. Let α : G1 −→ G2 be an isomorphism and let ρ : G1 −→
GL(S) be a complex irreducible unitary representation. For g1 ∈ G1

denote g2 = α(g1) and define σ : G2 −→ GL(S) by setting

σg2 = σ(g2) = σ(α(g1)) := ρ(g1) i.e. σ = ρ ◦ α−1.

The representation σ is irreducible. Indeed, if there exists a non trivial
subspace V of S which is G2-invariant, one has σg2(v) ∈ V ∀v ∈ V
and ∀g2 ∈ G2. This implies V 3 σg2(v) = σα(g1)(v) = ρg1(v) ∀g1 ∈ G1

(because α is an isomorphism) and ∀v ∈ V , so V is G1-invariant, in
contradiction with the assumption that ρ is irreducible. Moreover, σ
is unitary as

〈σg2(v), σg2(w)〉 = 〈ρg1(v), ρg1(w)〉 = 〈v, w〉

for any v, w ∈ S (〈., .〉 denotes the inner product in S).

�

Denote R the set of complex irreducible unitary representations of
the groups G1 and G2: they are finite dimensional, since the groups
are compact. As G1 and G2 act by isometries on (F1, gF1) and (F2, gF2)
resp., we can consider the canonical decompositions of the spaces
L2(F1) and L2(F2) in isotypical components (they are L2-orthogonal)

(3) L2(F1) = ⊕ρ∈RL2
ρ(F1) , L2(F2) = ⊕ρ∈RL2

ρ(F2).

We have also another decomposition of these two spaces. Let us
call µ1 < µ2 < . . . the eigenvalues of the Laplace-Beltrami operators
∆F1 and ∆F2 : as the manifolds F1 and F2 are isospectral, ∆F1 and
∆F2 have the same eigenvalues and each of them has the same mul-
tiplicity. Thus, the eigenspaces EF1(µi) and EF2(µi) have the same
(finite) dimension and they are consequentely isomorphic. The spaces
L2(Fj) have also the following L2-orthogonal decompositions:

(4) L2(F1) = ⊕iEF1(µi) , L2(F2) = ⊕iEF2(µi).

As G1 and G2 act by isometries on (F1, gF1) and (F2, gF2) resp., we
have the similar decompositions in isotypical components

(5) EF1(µi) = ⊕ρ∈REρF1
(µi) , EF2(µi) = ⊕ρ∈REρF2

(µi).
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As EF1(µi) and EF2(µi) are isomorphic, these two decompositions
coincide. Notice that for any fixed ρ ∈ R, one has

(6) EρFj
(µi) = EFj (µi) ∩ L2

ρ(Fj) j = 1, 2,

this means that not all the representations ρ appear in a fixed eigenspace
and that the same ρ may appear in different eigenspaces. The number
of times in which a fixed ρ appears in the eigenspaces EF1(µi) and
EF2(µi) is the same.

We consider also the decomposition in isotypical components of
L2(Pj), j = 1, 2:

(7) L2(P1) = ⊕ρ∈RL2
ρ(P1) , L2(P2) = ⊕ρ∈RL2

ρ(P2).

For a fixed d-dimensional representation ρ ∈ R, consider two iso-
morphic irreducible non trivial d-subspaces V1 and V2 of L2

ρ(P1) and
L2
ρ(P2) which are G1- , resp. G2-, invariant. For the same ρ, consider

also two isomorphic irreducible non trivial d-subspaces W1 and W2 of
L2
ρ(F1) and L2

ρ(F2) which are G1- , resp. G2-, invariant. By Schur’s
lemma, there exists a unique (up to a complex number of modulus 1)
equivariant isometry αVjWj between Vj and Wj , j = 1, 2.

Definition 3.2 Let Ψj = (ψj1, . . . , ψ
j
d) be an orthonormal basis of Vj

and let Φj = (ϕj1, . . . , ϕ
j
d), with ϕji = αVjWj (ψji ), be the corresponding

orthonormal basis of Wj. Define the scalar product

(8) 〈Ψj ,Φj〉 =
1
d

d∑
i=1

ψjiφ
j
i

(the functions ψji and φji are lifted on the product Pj × Fj by the
canonical projections).

It is easy to verify that the function 〈Ψj ,Φj〉, j = 1, 2, is invariant
under the action of Gj on Pj ×Fj , and that it does not depend on the
choice of the basis Ψj , thus it pass to the quotient Mj = Pj ×Gj Fj ;
in the sequel we shall consider 〈Ψj ,Φj〉 as a function on Mj .

Theorem 3.3 The family of the functions 〈Ψj ,Φj〉 defined by (8)
associated to all the possible pairs (Vj ,Wj) is a Hilbertian basis of the
space of the L2-functions on Pj×Fj invariant under the action of Gj,
i.e. the space L2(Mj).

Proof. Let L2
Gj

(Pj×Fj) denote the space of L2-functions on Pj×Fj
invariant under the action of Gj , and consider the decomposition (cf.
(3), (7))

L2(Pj × Fj) = L2(Pj)⊗ L2(Fj) =
∑
ρ,ρ′∈R

L2
ρ(Pj)⊗ L2

ρ′(Fj).
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Then for η ∈ L2
Gj

(Pj × Fj) the classical relations on the characters
(see for instance [11], p. 28,48) give that the orthogonal projection of
η on L2

ρ(Pj)⊗ L2
ρ′(Fj) is equal to zero if ρ′ 6= ρ, that is to say

L2
Gj

(Pj × Fj) =
∑
ρ∈R

L2
ρ(Pj)⊗ L2

ρ(Fj).

Moreover, it is clear by computing L2-scalar products that for different
choices of the couples (Vj ,Wj) the corresponding functions 〈Ψj ,Φj〉
are L2-orthogonal.

�

Vj and Wj are in fact included in some eigenspaces of ∆Pj and ∆Fj

resp., related to certain eigenvalues αj + βj ∈ Spec(∆Pj ) with αj ∈
Spec(∆h

Pj
) and βj ∈ Spec(∆v

Pj
), and µj ∈ Spec(∆Fj ) respectively:

(9) ∆Pjψ
j = ∆h

Pj
ψj + ∆v

Pj
ψj = αjψj + βjψj , ∆Fjϕ

j = µjϕj .

Theorem 3.4 The family of the functions 〈Ψj ,Φj〉 is a Hilbertian
basis of L2(Mj) consisting in eigenfunctions of ∆Mj . The eigenvalue
corresponding to the eigenfunction 〈Ψj ,Φj〉 is αj + µj.

For the proof, see [3]; in this paper it is also given the follow-
ing explicit formula for the multiplicity of a given eigenvalue νj of
Spec(∆Mj ):

(10) mult(νj) =
∑
ρ∈R

∑
αj+µj=νj

mαj (ρ)mµj (ρ)

with αj ∈ Spec(∆h
Pj

), µj ∈ Spec(∆Fj ) and wheremαj (ρ), resp. mµj (ρ),
is the multiplicity of the representation ρ, resp. ρ, in the eigenspace
of ∆h

Pj
, resp. ∆Fj , related to the eigenvalue αj , resp. µj . It is clearly

finite.
Notice that not all sums αj + µj are eigenvalues of ∆Mj : if αj

correspond to a representation ρ, µj must correspond to ρ, and all
unitary irreducible representations of Gj appear in L2(Pj), but not
all do in L2(Fj). Notice also that the vertical Laplacian ∆v

Pj
does not

give any contribution in Spec(∆Mj ).

4 Conclusion

Theorem 3.4 and formula (10) show that, when the manifolds F1, F2

are isospectral and not isometric, the manifolds M1,M2 defined in sec-
tion 2 have the same eigenvalues, each of them with the same multi-
plicity, that is they are isospectral and not isometric too. The metrics
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g1, g2 defined on M1,M2 and such that the projections π1, π2 on B
are Riemannian submersions with totally geodesic fibers isometric to
F1, F2 respectively, decompose each in horizontal and vertical part.
The horizontal parts are the same, because both are isometric to the
metric of the basis B, while the vertical parts are the metrics of the
fibers. Therefore the isometry groups of M1 and M2 are isomorphic
because they must respect the decomposition in horizontal and verti-
cal parts (these are orthogonal), and they come from the group of the
isometries of B and from the groups G1 and G2 of the isometries of
F1 and F2, which are isomorphic. Consequently, the process of con-
struction of isospectral manifolds can be repeated starting from B and
M1,M2. By iteration, we get so two families of isospectral manifolds
fibered on B, in each of them the fibers are the manifolds obtained in
the previous step: these families are the ”towers”.

Example 4.1 Consider now the isospectral manifolds of Sunada [12].
Let us recall that, given a 4-dimensional manifold M0 with fundamen-
tal group G and whose universal covering is denoted p : M −→ M0,
Sunada builds up the intermediate coverings p1 : F1 = M/H1 −→M0

and p2 : F2 = M/H2 −→M0 having as fundamentals groups two non
conjugate subgroups H1, H2 of G, and he shows that, when H1 and
H2 are not isomorphic, then the manifolds (F1, p

∗
1g0) and (F2, p

∗
2g0)

are isospectral but not isometric for any metric g0 on M0. However,
also in the case in which H1 and H2 are isomorphic as abstract groups,
such manifolds are isospectral and not isometric for some metric g0 on
M0. For instance, this happens when the isometry group of the univer-
sal covering space M of M0, endowed with the metric p∗g0 coincides
with the covering transformation group G. In this case, the isometry
groups G1 = G/H1 of (F1, p

∗
1g0) and G2 = G/H2 of (F2, p

∗
2g0) are

isomorphic as abstract groups since H1 and H2 are. Then, we can use
the manifolds F1, F2 to apply our construction.
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Università della Calabria
Dipartimento di Matematica
Ponte P. Bucci, Cubo 31B
87036 Arcavacata di Rende (Cs) - Italia
marino@unical.it

8


