Well-Posedness and Stability of Damped Wave Equations with Singular Memory

Piermarco Cannarsa and Daniela Sforza

Abstract. We study second order integro-differential equations in Hilbert spaces with weakly singular kernels, obtaining uniform estimates in t. Then, we apply such estimates to derive the exponential decay at ∞ of the energy of solutions.

1. Introduction

It is well known that the abstract integro-differential equation

$$
\ddot{u}(t) + c_0 \dot{u}(t) + Au(t) - \int_0^t \beta(t-s)Au(s)ds = 0 \quad t \geq 0,
$$

may be regarded as a model problem for some elastic systems with memory, see [3, 4, 15]. In this paper we are interested in the maximal regularity and asymptotic behaviour of the solutions of the above equation, where A is a positive operator on a Hilbert space X, with domain $D(A)$, and $c_0 \geq 0$ is a damping coefficient.

Well-posedness results are known for (1)—in fact, for nonlinear variants of such an equation—when β is absolutely continuous (see, e.g., [12, 2]). So, in this paper, we will focus our attention on the case of discontinuous kernels that is quite relevant for applications (see, e.g., [14]).

More precisely, we will consider kernels $\beta \in L^1(0, \infty)$ satisfying a standard integral constraint and such that $k(t) := \int_t^\infty \beta(s)ds$ is a kernel of positive type. It is noteworthy that these assumptions imply a commonly accepted form of thermodinamical restriction on the concrete models described by (1), see, e.g., [6, 7]. A typical example covered by our theory is the following:

$$
\beta(t) = \frac{1-a}{2} e^{-t} t^{-a} \cos(bt) \quad t > 0
$$

where $0 \leq a < 1$ and $b \in \mathbb{R}$.

Since we impose assumptions of global nature for β, one would also expect global estimates to hold for the solutions of (1). In this paper we show that this is indeed the case, obtaining maximal regularity estimates for u uniformly in t.

Once well-posedness is established, we turn to study the asymptotic behaviour of the solutions of (1) for $c_0 > 0$. Under a stronger sommability assumption for β at ∞, we show that the energy of any mild solution decays exponentially at ∞. Our approach consists in applying uniform estimates to a perturbed equation, obtained multiplying u by a positive exponential function. For related results on exponential decay the reader is referred to [10, 13], where the case of smooth convolution kernels is considered, and to [8, 11], where the decay of the semigroup associated with (1) is obtained.

The outline of this paper is the following. In section 2 we recall some known facts on integral equations and derive preliminary results. Section 3 is devoted to well-posedness. In particular, we prove existence and regularity results for the resolvent, obtaining uniform estimates in t. Finally, in section 4, we show the exponential decay at ∞ of the energy of solutions.

*to appear in: Proceedings of the 8th Conference on Control of Distributed Parameter Systems, Graz-Mariatrost
Damped wave equations with memory

References

Dipartimento di Matematica
Università di Roma Tor Vergata
via della Ricerca Scientifica
I-00133 Roma, Italy
E-mail address: cannarsa@mat.uniroma2.it

Dipartimento di Metodi e Modelli Matematici
Università di Roma La Sapienza
via Antonio Scarpa 16
I-00161 Roma, Italy
E-mail address: sforza@dmmm.uniroma1.it