ON A HIERARCHY OF MODELS FOR ELECTRICAL CONDUCTION IN BIOLOGICAL TISSUES

M. AMAR¹ – D. ANDREUCCI¹ – P. BISEGNA² – R. GIANNI¹

¹DIPARTIMENTO DI METODI E MODELLI MATEMATICI
UNIVERSITÀ DI ROMA “LA SAPIENZA”
VIA A. SCARPA 16, 00161 ROMA, ITALY
²DIPARTIMENTO DI INGEGNERIA CIVILE
UNIVERSITÀ DI ROMA “TOR VERGATA”
VIA DEL POLITECNICO 1, 00133 ROMA, ITALY

ABSTRACT. In this paper we derive a hierarchy of models for electrical conduction in a biological tissue, which is represented by a periodic array of period \(\varepsilon \) of conducting phases surrounded by dielectric shells of thickness \(\varepsilon \eta \) included in a conductive matrix. Such a hierarchy will be obtained from the Maxwell equations by means of a concentration process \(\eta \to 0 \), followed by a homogenization limit with respect to \(\varepsilon \). These models are then compared with regard to their physical meaning and mathematical issues.

KEYWORDS: Homogenization, Asymptotic expansion, Dynamical condition, Electrical conduction in biological tissues.
AMS-MSC: 35B27, 35C20, 78A70.