New Trends in Non-uniform Subdivision

Thomas Cashman, Michael Floater, Ron Goldman, Kai Hormann

University of Cambridge University of Oslo Rice University University of Lugano

Abstract

This talk is about some recent results for non-uniform subdivision schemes. They can basically be grouped in two categories. On the one hand, we discuss linear, but nonuniform subdivision schemes. This includes non-uniform refine and smooth algorithms for B-spline curves as well as schemes for NURBS surfaces. On the other, we present truly non-linear subdivision schemes. This includes subdivision by non-linear averaging as well as the parametric equivalent to the uniform Dubuc–Deslauriers schemes.

References

- T.J. Cashman, U.H. Augsdörfer, N.A. Dodgson, and M.A. Sabin. NURBS with extraordinary points: High-degree, non-uniform, rational subdivision schemes. ACM Transactions on Graphics, 28(3):Article 46, Aug. 2009.
- [2] T.J. Cashman, N.A. Dodgson, and M.A. Sabin. Selective knot insertion for symmetric, non-uniform refine and smooth B-spline subdivision. *Computer Aided Geometric Design*, 26(4):472–479, May 2009.
- [3] N. Dyn, M.S. Floater, and K. Hormann. Four-point curve subdivision based on iterated chordal and centripetal parameterizations. *Computer Aided Geometric Design*, 26(3):279– 286, Mar. 2009.
- [4] R. Goldman, E. Vouga, and S. Schaefer. On the smoothness of real-valued functions generated by subdivision schemes using nonlinear binary averaging. *Computer Aided Geometric Design*, 26(2):231–242, Feb. 2009.
- [5] S. Schaefer and R. Goldman. Non-uniform subdivision for B-splines of arbitrary degree. Computer Aided Geometric Design, 26(1):75-81, Jan. 2009.