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Università “La Sapienza” di Roma,

Via A. Scarpa 16, 00161 Roma, Italy

Abstract

We study a card game called Mousetrap, together with its generalization He Loves
Me, He Loves Me Not. We first present some results for the latter game, based,
on one hand, on theoretical considerations and, on the other one, on Monte Carlo
simulations. Furthermore, we introduce a new combinatorial algorithm, which allows
us to obtain the best result at least for French card decks (52 cards with 4 suits). We
then apply the new algorithm to the study of Mousetrap and Modular Mousetrap,
improving recent results. Finally, by means of our algorithm, we study the reformed
permutations in Mousetrap, Modular Mousetrap and He Loves Me, He Loves Me
Not, attaining new results which give some answers to several questions posed by
Cayley and by Guy and Nowakowski in their papers.
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1 Introduction

In 1857 Cayley [2] proposed a game called Mousetrap, played with a deck
containing only one suit; here we report the description given in ([8], p. 237):

”Suppose that the numbers 1, 2, ..., n are written on cards, one to a card.
After shuffling (permuting) the cards, start counting the deck from the top
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card down. If the number on the card does not equal the count, transfer the
card to the bottom of the deck and continue counting. If the two are equal
then set the card aside and start counting again from ”one”. The game is won
if all the cards have been set aside, but lost if the count reaches n + 1.”

Cayley posed the fundamental question [3]: ”Find all the different arrange-
ments of the cards, and inquire how many of these there are in which all or
any given smaller number of the cards will be thrown out; and (in the several
cases) in what orders the cards are thrown out.”

Relatively few authors (in chronological order: [3], [19], [8], [10], [12], [9], [11],
[18]) have studied the problem, arriving, only recently [9], [12], [18], at partial
results.

In ([8], p. 238), [9] and [10] Guy and Nowakowski consider another version
of the game, called Modular Mousetrap, where, instead of stopping the game
when no matching happens counting up to n, we start our counting again
from ”one”, arriving either to set aside every card or at a loop where no cards
can be set aside anymore. Obviously, in this game, if n is prime, we have only
two possibilities: either derangement, where no coincidences occur, or winning
deck.

The games are studied in the case of only one suit. Here we introduce for
the first time the generalized version of Mousetrap to the case of several suits
(”multisuit” Mousetrap: n = m · s).

Mousetrap rules could be generalized at least in two different ways: when the
player has counted up to m, without coming to a card which ought to be
thrown out, he can

a) either stop the game (Mousetrap-like rule)

b) or eliminate the last m cards and continue his counting, restarting from
”one”, up to the exhaustion of the deck, when all the cards have been elimi-
nated or stored.

We choose the second option, that recalls a different solitaire, which we con-
sider in Section 2. It is not known in the mathematical literature, but, as told
in [13], it has been studied for a relatively long time. It is commonly called
He Loves Me, He Loves Me Not ((HLM)2N) or Montecarlo:

”From a deck with s suits and m ranks, deal all the cards into a pile one
at a time, counting ”one”, ”two”, ”three” etc. When a card whose value is k
proves to be of the rank you call, it is hit. The card is thrown out and stored in
another pile, the score is increased by k, the preceding k − 1 cards are put at
the end of the deck, in the same order in which they were dealt and you start
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again to count ”one”, ”two”, ”three” etc. If you count up to m without any
matching, the last m counted cards are ”burned”, i.e., definitively discarded
and you begin the count afresh, counting ”one”, ”two”, ”three” etc. with the
successive residual cards. When the number nc of cards in the residual deck
is less than m, the count can arrive, at most, at the value nc. The game ends
when you have stored and/or ”burned” all the cards and there are no more
cards in the deck. The score of the game is given by the sum of the face values
of all the stored cards.”

The aim of the game is to achieve the greatest possible score.

Up to now, this game has been studied only by means of Monte Carlo simu-
lations, separately by Andrea Pompili [13] and by the author.

In this paper we introduce a new technique, which allows us to obtain the
number of winning decks for many values of m and s, without any need of
simulations, not only for (HLM)2N , but also for Mousetrap and Modular
Mousetrap, in their ”multisuit” version, too. The technique has been imple-
mented in a computer program. New results have been obtained in a very
efficient way and many others could be reached, if the algorithm could be
implemented in a parallel computing framework.

In their papers devoted to Mousetrap, Guy and Nowakowski proposed to study
the so-called reformed decks (or permutations): “consider a permutation for
which every number is set aside. The list of numbers in the order that they
were set aside is another permutation. Any permutation obtained in this way
we call a reformed permutation. Characterize the reformed permutations.”

The aim of this paper is to apply the new technique to the analysis of reformed
decks, in the three games and to show new results which can answer some open
questions proposed by Cayley and by Guy and Nowakowski.

The paper is divided into seven Sections.

In Section 2 we recall the most important results related to the game Mouse-
trap; moreover we consider the introductory notions of (HLM)2N and state
two conjectures: a stronger one (SC) and a weaker one (WC), concerning the
possibility to find at least one winning deck.

In Section 3 we briefly describe the algorithm, based on Monte Carlo sim-
ulations, with which we obtained winning decks just for a small number of
cases; up to now, it represented the unique method used to validate the two
conjectures.

In Section 4 we show a completely new method, which is highly performing
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and which allows us not only to give a positive answer to (SC) at least up to a
deck of French cards (m = 13; s = 4), but, for a large range of m and s, gives
the exact number of winning decks, i.e., of decks giving the best reachable
score. Thanks to the new method, an answer to the question of the number
of winning decks at (HLM)2N is given, up to s = 2 , m = 16 ; s = 3 , m =
10 ; s = 4 , m = 7.

In Section 5, adapting the new technique to the games Mousetrap and Modular
Mousetrap, we extend the results attained in [9] up to m = 16 , s = 1 and
to ”multisuit” Mousetrap. Thanks to the new method introduced in Section
4, we give an answer to the question of the number of winning decks, up to
s = 1 , m = 16 ; s = 2 , m = 9 ; s = 3 , m = 6 ; s = 4 , m = 5 for
Mousetrap; s = 1 , m = 13 ; s = 2 , m = 7 ; s = 3 , m = 5 ; s = 4 , m = 4
for Modular Mousetrap.

Moreover, by means of the new technique, we give, in a very easy way, a
positive answer to a question originally posed by Cayley [2].

In Section 6, applying the new technique to the study of reformed decks in
the three games, we obtain many (even unexpected and curious) results. In
particular, we produce the first 5-reformed deck, for Mousetrap (m = 16, s =
1). Moreover we discuss the existence of k-reformed decks, with k > 5, by
means of probabilistic considerations.

In Section 7 we give a short review of open problems and perspectives.

The twenty tables, quoted in this paper, containing all the results here de-
scribed, can be found, as online supplementary material, on the web page

http://www.dmmm.uniroma1.it/∼bersani/mousetrap.html/tables.pdf

2 Introductory notions and preliminary results on Mousetrap and
(HLM)2N

There are few results on Mousetrap, obtained, in particular, by Steen [19],
already in 1878 and, much more recently, by Guy and Nowakowski [9], Mund-
from [12] and Spivey [18].

Cayley [2] proposed to investigate, at Mousetrap, whatever the number n of
cards is, which permutations throw out the cards in the same order of their
numbers. He obtained the corresponding permutations for n ≤ 8:

1 ; 1 2 ; 1 3 2 ; 1 4 2 3 ; 1 3 2 5 4 ;
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1 4 2 5 6 3 ; 1 5 2 7 4 3 6 ; 1 6 2 4 5 3 7 8 .

Guy and Nowakowski observed that not all the permutations are reformed
permutations. On the other hand, the identity permutation 1 2 · · · n is always
a reformed permutation. Since it is not possible, in general, to arrange the
cards so that all the cards may be thrown out in a predetermined order,
Cayley [3] posed the following questions:

1) for each n find the winning permutations of 1 2 · · · n;

2) for each n find the number of permutations that eliminate precisely i cards
for each i , 1 ≤ i ≤ n.

He studied the game Mousetrap in the case n = 4, analyzing the 4! = 24
different decks. Curiously, he made mistakes in six cases.

Steen [19], already in 1878 and, much more recently, Guy and Nowakowski
[9], Mundfrom [12] and Spivey [18], obtained deeper results. Steen calculated,
for any n, the number an,i of permutations that have i , 1 ≤ i ≤ n, as the
first card set aside and the numbers bn,i and cn,i of permutations that have
“one” (respectively “two”) as the first hit and i as the second. He obtained
the following recurrence relations:

an,1 = (n− 1)! , an,i = an,i−1 − an−1,i−1 , bn,i = an−1,i−1 , ∀i = 2, .., n (1)

cn,i = cn,1 − (i− 1)cn−1,1 +
i−2∑

k=2

(−1)k · i(i− 1− k)

2
cn−k,1 ∀n > i + 1 (2)

Denoting with an,0 the number of derangements; an =
n∑

k=1

an,k the total number

of permutations which give hits; bn,0 the number of permutations giving “one”

as the only hit; bn =
n∑

k=2

bn,k the total number of permutations giving a second

hit, “one” being the first; cn,0 the number of permutations giving “two” as

the only hit; cn =
n∑

k=1

cn,k (k 6= 2) the total number of permutations giving

a second hit, “two” being the first; putting a0,0 = 1, Steen showed that, for
0 ≤ i ≤ n

an,0 = an+1,n+1 , an,0 = nan−1,0 + (−1)n , an,i+1 =
i∑

k=0

(−1)k
(

i
k

)
(n− 1− k)!(3)

bn,i = an−1,i−1 = an−2,i−2 − an−3,i−2 , bn,0 = an,1 − bn = an,1 − an−1 = an−1,0(4)

an = n an−1 + (−1)n−1 , bn = an−1 (5)
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cn,i =

[
i−3∑

k=1

(−1)k+i−1 k(k + 3)

2
(n− i + k − 1)!

]
− (i− 1)(n− 3)! + (n− 2)! .(6)

Guy and Nowakowski [9] and Mundfrom [12] showed separately that Steen’s
formula (6) is not valid for i = n− 1 and i = n and gave the exact relations.

We quote the expressions, together with the equation for cn =
n∑

k=1

cn,k , k 6= 2,

as shown by Guy and Nowakowski [9], thanks to their compactness:

cn,n−1 =
n−3∑

k=0

(−1)k
(

n− 3
k

)
(n− k − 2)! (7)

cn,n = (n− 2)! +

[
n−5∑

k=0

(−1)k+1
((

n− 4
k

)
+

(
n− 3
k + 1

))
(n− k − 3)!

]
+ 2(−1)n−3(8)

cn = (n− 2)(n− 2)!−
[[

1

e
((n− 1)!− (n− 2)!− 2(n− 3)!

]]
, (9)

where [[x]] is the nearest integer to x.

Spivey [18] approaches the game of Mousetrap using staircase rook polynomials
([14], Ch. 7, pp. 163–194) and determines the rook polynomial for the number
of permutations in which card j is the only card removed and for the number
of permutations in which card j followed by card k are the first two cards
removed.

Setting Mn,j as the number of decks in which card j is the only card removed,
he shows that if n ≥ 4

Mn,2 = an−1,0 − an−2,0 − 2an−3,0 .

Steen [19], Guy and Nowakowski [9] and Mundfrom [12] elaborated some tables
related to formulas (1) - (9). The sequences there reproduced are quoted by
Sloane [15], [16], [17] in the following way:

{an}n∈IN ([19]): [15] N1423, [16] M3507, [17] A002467;

{an,0}n∈IN ([19]): [15] N0766, [16] M1937, [17] A000166;

{an,2}n≥2 ([19]): [15] N1436, [16] M3545, [17] A001563;

{cn}n≥2 ([9], [12], [19]): [15] N1186, [16] M2945, [17] A002468;

{cn,0}n≥2 ([12], [19]): [15] N1635, [16] M3962, [17] A002469;

6



{cn,3}n≥3 ([12], [19]): [17] A018931;

{cn,4}n≥4 ([12], [19]): [17] A018932;

{cn,5}n≥5 ([12], [19]): [17] A018933;

{c2,1} ∪ {cn,n}n≥3 ([12], [19]): [17] A018934.

Let us observe that, owing to his mistakes in the formula for cn,i, Steen re-
ported erred sequences for {cn}n≥2 , {cn,0}n≥2 and {c2,1}∪{cn,n}n≥3. The cor-
rect sequences, obtained by Mundfrom, are quoted as [17] A002468, A002469
and A018934. Guy and Nowakowski [9] extended the correct form of the se-
quence [17] A002468 up to the value n = 20.

Sequences [17] A000166 of derangements {an,0} and A002467 of permutations
with at least one fixed point arrive at n = 21, but can be easily improved
by means of the following classical result, based on the inclusion-exclusion
principle ([6], Ch. 4, pp. 88–103), ([7], pp. 136–137), ([14], Ch. 3, pp. 50–65):

Lemma 2.1 The probability of derangement for the games Mousetrap (M)
and Modular Mousetrap (MM) is

PM,m(0) = PMM,m(0) =
m∑

k=0

(−1)k

k!
. (10)

and

lim
m→∞PM,m(0) = lim

m→∞PMM,m(0) = Po1(0) = e−1 ,

where Po1(k) is the poissonian distribution with characteristic parameter 1:

Po1(k) =
e−1

k!
.

As a partial answer to question 2) by Cayley, Guy and Nowakowski [9] pro-
duced a table, giving the numbers of permutations eliminating just i cards
(1 ≤ i ≤ 9); the diagonal represents the numbers of winning permutations,
i.e., permutations setting aside all the n cards and represents a partial answer
to question 1) by Cayley. Guy and Nowakowski computed the terms up to
n = 9. Since the table does not derive from any closed formula, it was prob-
ably obtained by means of direct computations, considering that, for n = 9,
it is possible to check, by means of a computer, all the permutations, whose
number is equal to 9! = 362880.

This table is quoted as [17] A028305, up to n = 7.

We can derive other sequences from this table: the first column is the se-
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quence [17] A000166 of derangements. The second column is the sequence [17]
A007710 ([16] M1695) of permutations eliminating just one card. The top di-
agonal is the sequence [17] A007709 ([16] M1608) of winning (or reformable)
decks, i.e., of decks eliminating all the cards. The sums of the terms of each
row, except the terms on the top diagonal, give the first nine terms of the
sequence [17] A007711 ([16] M3546) of unreformed decks, i.e., of decks which
do not eliminate all the cards.

Furthermore, Guy and Nowakowski proved the formula for the probability
that only the card with value k is set aside from a deck of n > 2 cards and
showed the related complete table of values, for 1 ≤ k ≤ n , 1 ≤ n ≤ 10,
adding another table, for 11 ≤ n ≤ 17, but 1 ≤ k ≤ 5.

Sequence [17] A028306 quotes the table, up to n = 8.

Knowing general formulas giving the numbers of permutations that have i as
the k-th hit, given the previous (k−1) hits, would be very useful to arrive at a
closed formula for the probability distribution of the game. But, as remarked
by Steen, already the computations to obtain cn,i are very difficult and it is
hard to expect more advanced results in this direction.

In Section 5 we present new results, based not on closed formulas but on
Computational Combinatorics tools, which extend the results attained in [9]
up to m = 16 , s = 1 and to ”multisuit” Mousetrap.

Finally, Guy and Nowakowski [9] yielded some results for the game Modular
Mousetrap.

The game He Loves Me, He Loves Me Not ((HLM)2N), described in the
Introduction, can be played with arbitrary values of m and s.

Since after every matching we start counting again from ”one”, the game
recalls Mousetrap. On the other hand, the game differs from Mousetrap for
the following reasons:

a) we record the sum of the values of the cards, not their number; obviously,
in a deck of m · s cards, we can, at most, obtain

s ·
m∑

k+1

k =
s

2
m(m + 1) points ;

b) we ”burn”, i.e., we eliminate m cards, if no coincidences occur counting
from 1 to m, but we do not stop the game and we continue our counting
starting again from ”one”.
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We can either stop the game when, remaining in the deck a number nc < m of
cards, we don’t obtain any matching counting up to nc, or, following Mousetrap
rules, continue our counting up to m; in this second case, if no matching
happens counting up to m, the game stops; otherwise we can restart our
counting, after having stored the last matching card. In the first case, we play
(HLM)2N ; in the second we play the ”multisuit” Mousetrap.

According to the author’s opinion, Mousetrap and (HLM)2N are very in-
triguing, because there is no a priori information on any potential winning
deck.

Moreover, the rule followed by Mousetrap allows the player to store all the
m · s cards (in fact, at Mousetrap, if we remain with only one card in the
deck, we know that we will store it, because we will count up to m visiting
always the same card, whose values is, obviously, less or equal to m). Instead,
thanks to the following theorem, we know that in (HLM)2N we can store at
most ms − 1 cards. In other words, when we consider Mousetrap with more
than one suit, this game is easier than (HLM)2N and every deck winning at
(HLM)2N wins at Mousetrap.

Theorem 2.1 In (HLM)2N , for every s,m we can store at most ms−1 cards
and the score cannot exceed

Cmax :=
s

2
[m(m + 1)]− 2 . (11)

Proof The proof is based on contradiction. Let us suppose that we can store

all the n = m · s cards. Since the storage mechanism implies that, once a card
is stored, the number of residual cards in the deck is lowered by one, the last
stored card lowers the residual deck from one card to no cards. Consequently,
the only card storable as the last one is an ”ace”. Proceeding backward in the
storage mechanism, when we store the last but one card, the deck passes from
two cards to one. One of these two cards, as already observed, is an ”ace”. The
second one, that must be stored, can be only an ”ace” or a ”two”. But if we
want to store the ”two”, the other card, which precedes it, cannot be an ”ace”
(otherwise, counting the two cards, we should have first stored the ”ace”!).
Thus the last two cards must be two ”aces”. Continuing our process backward
and reasoning in the same way as before, since we want to store all the last
three cards, the last but two cards must be an ”ace”, a ”two” or a ”three”.
But if the last but two cards is a ”two” or a ”three”, if we want to store it we
should not have an ”ace” as the first of the three cards, in contradiction with
the fact that the other two cards are two ”aces”. Consequently, the last three
cards must be three ”aces”. The backward reasoning can be iterated, arriving
at the conclusion that, for every k, the last k cards must be ”aces”. But the
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number of ”aces” is equal to s, so, when k > s, we arrive at a contradiction.
Formula (11) immediately follows from the first thesis.

The crucial question is if it is always possible to find a deck from which we
can store all the cards but a ”two” and, consequently, we can obtain Cmax.

We can state the following two conjectures:

Strong Conjecture (SC) In (HLM)2N , for s = 2 ; m ≥ 6 and s ≥ 3 ; m ≥
2, there exists at least one deck from which we store sm − 1 = n − 1 cards,
obtaining the best score, i.e.,

Cmax =
s

2
m(m + 1)− 2 .

Weak Conjecture (WC) In (HLM)2N , for every s ≥ 2 ; m ≥ 2, there
exists at least one deck from which we store sm− 1 = n− 1 cards.

Remark 2.1 For s = 1 it is impossible to obtain Cmax. In fact, let us observe
that, for s = 1, the only way to store the card with value m consists in putting
it in the m-th place, without having any other coincidences in the previous
(m − 1) places. Let us indicate with X1 X2 X3 ... Xm−2 Xm−1 an arbitrary
derangement of the first (m − 1) cards; thus the m cards have the following
sequence in the deck:

X1 X2 X3 ... Xm−2 Xm−1 m .

But in the turn following the matching of the card m, the residual deck is
formed by (m − 1) cards, placed in a derangement; consequently we cannot
have any other coincidences.

Remark 2.2 For s = 1 it is impossible to obtain Cmax. In fact, let us observe
that, for s = 1, the only way to store the card with value m consists in putting
it in the m-th place, without having any other coincidences in the previous
(m − 1) places. Let us indicate with X1 X2 X3 ... Xm−2 Xm−1 an arbitrary
derangement of the first (m − 1) cards; thus the m cards have the following
sequence in the deck:

X1 X2 X3 ... Xm−2 Xm−1 m .

But in the turn following the matching of the card m, the residual deck is
formed by (m − 1) cards, placed in a derangement; consequently we cannot
have any other coincidences.

Remark 2.3 For s = 2 there exist cases for which it is not possible to obtain
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the best score given by (11). The case s = 2 , m = 3 (90 different decks) can be
verified directly, ”by hand”. The best reachable score, in this case, is 9, instead
of 10. In the other cases, with an increasing value of m, we need numerical
simulations: for s = 2 , m = 4 (2530 different decks) and for s = 2 , m = 5
(113400 different decks), we obtain, respectively, 17 points, instead of 18 and
27 points, instead of 28. In Section 4 we prove this fact. For s = 2 , 6 ≤ m ≤ 13
we obtained the best score, given by (11).

3 Monte Carlo simulations

In order to obtain at least experimental answers to (SC) and (WC) for several
values of m and s ≤ 4, we built up a computer software, based on Monte
Carlo simulations (which allow us to approximate the probability distribu-
tion by means of the frequency distribution of a sufficiently high number of
experiments), according to the following, simple steps:

a) deck ”shuffling”, by means of random permutations of an initial deck;

b) playing the game: in a vector C, with
s

2
[m(m+1)] components, the first sm

components are filled with the shuffled deck. A cursor passes through all the
ordered components. When the first matching happens at a card, whose value
is k1, the preceding (k1− 1) cards are put in the same order just after the last
nonzero component of C, filling the vector components from the (ms + 1)-th
position to the (ms + k1 − 1)-th one. The cursor restarts from the (k1 + 1)-th
position, counting from ”one”. The card k1 is stored and the actual score is
increased by k1 points. Subsequently, at the r-th matching, corresponding to
the card kr, we shift the preceding (kr− 1) cards, in the same order, just after
the last nonzero component of the vector and so on.

Calling nc the minimum value between the number of residual cards in the
deck and m, when no coincidences happen after nc cards, they are eliminated
and if nc ≤ m the game stops because there are no more cards to be ”visited”.

c) data storage: at the end of every game, if the score exceeds a determined
threshold (for example, the previous best score), we store in a data file the
score, the number of stored cards and the winning deck. If we are interested
in the statistics, all the information for every deck is stored in frequency dis-
tribution vectors, letting the program compute the averages of scores, of the
number of stored cards and of the values of stored cards. If we are interested
only on the best score, when in a deck m consecutive cards are eliminated, due
to no coincidences, the deck is discarded, because no longer able to improve
the actual best score and the game restarts with a new deck.
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The method is very efficient, considering the speed of execution and, in par-
ticular, the disk usage for the data storage; in fact, after the game, it is always
possible to obtain back the deck we have examined, considering the first m · s
components of the card vector C.

The software has been written in FORTRAN code and implemented in a PC,
equipped with a Pentium IV. On the other hand, Andrea Pompili, in [13],
used a Borland C language.

We can count in three different ways (they are the three ways of counting I
know, from direct experience and from literature on solitaires, but many other
ways could be chosen!):

a) ace (1), m, m-1, m-2, ..., 4, 3 , 2 ;

b) m, m-1, m-2, ..., 4, 3 , 2, ace (1) ;

c) ace (1), 2, 3, ..., m-1, m .

In this paper we choose the option c). The number of different decks, in

(HLM)2N as in all the ”multisuit” games we consider in this paper, is given
by

Nm·s =
(m · s)!
(s!)m

. (12)

The presence of the denominator is related to what Doyle, Grinstead e Laurie
Snell [5] define rank-derangements: when s > 1, a deck obtained from another
one only exchanging the position between cards of the same rank is, playing
(HLM)2N or Mousetrap, identical to the original.

Table 1 shows that the possibility to validate the conjectures becomes very
hard when m and s increase too much. In order to give an idea of the compu-
tational complexity of the problem, let us observe that a French card deck has
52!

(4!)13
∼ 9.2 · 1049 permutations (without considering the rank-derangements).

Supposing that each one of the over 6 billion Earth inhabitants could examine
every day 20 billion decks, each one different from the others and from
the decks examined by the other players, with a computer (this is the
actual capacity of my FORTRAN program), we should need more than 2 ·1027

years to test all the different decks!

The threshold for the number of decks to be checked, beyond which the nu-
merical simulations seem to become inadequate, is around 1020. Nevertheless,
it is noteworthy the case m = 10 , s = 2. In fact, even after more than
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600 billion simulations, no evidence of a winning deck appeared, though the
number of different decks is ”only” almost 2.58 · 1015. In this case, the Monte
Carlo method has only given a positive answer to (WC), obtaining, at most,
106 points, instead of Cmax = 108, as predicted in (11). This situation could
have been a priori related either to an effective negative answer to (SC) for
m = 10, s = 2 or to the high number of different decks, in front of a too low
number of winning decks. Actually, we answer the question in a surprisingly
easy way in the next Section: there are only 656 winning decks and, conse-
quently, the probability of finding one of them is P10·2(108) ∼ 2.76·10−13. Then
it seems that we should have needed O(1012 ÷ 1013) simulations to expect to
find a winning deck.

4 The backward approach

Here we introduce a new technique, which gives much more satisfactory an-
swers than the numerical simulations, in a very efficient way, giving not only a
positive answer to (SC) at least up to m = 13 , s = 4, i.e., for the classical deck
of French cards (though it can be used to explore much larger decks), but also
the exact number of winning decks, and consequently, the exact probability
of winning, for a large number of cases, as shown in Table 2.

Let us first explain the method.

As already observed, after having assigned the first m · s components of the
vector C (which can have, at most, s

2
m(m + 1)− 1 components), after every

matching the card with value k1 giving this matching is stored and the pre-
ceding k1− 1 cards are put just after the last nonzero component of C, ready
to be visited again by the cursor, which, in this way, never comes back, but
continues forward, up to the end of the game.

In other words, playing the game we generate, from every deck, a string whose
length is, at most, Cmax = s

2
m(m + 1) − 1 (in this case, we played with a

winning deck and the last component in the string is a ”two”), whose first
m · s components give the initial configuration of the system, i.e., the original
deck. A derangement corresponds to a string with length m ·s, coinciding with
the original deck.

We can also consider another string, formed by the cards which have given a
matching, put in the same order in which they were stored. The length of the
strings generated by winning decks is n = m ·s, with the residual ”two” put in
the last position. This is a new deck, i.e., a permutation of the original deck.
In other words, the so modified winning strings correspond to the reformed
decks (or permutations) introduced by Guy and Nowakowski ([9], §E37), [10],
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[11].

Let us consider, just as an example, the only two winning decks, found by
means of the Monte Carlo method, in the case m = 7, s = 4, in at least 60
billion simulations:

4 3 1 4 7 7 2
6 5 4 7 3 1 3
3 6 2 2 1 7 6
6 5 1 5 4 5 2

(a)

4 3 7 3 1 6 7
2 7 5 3 5 2 2
4 4 6 2 1 7 5
6 3 1 6 5 1 4

(b) (13)

They generate, respectively, the following strings, S1 and S2:

4531754636427673256751431212

and
6232731474575645636751431212 .

Since our main goal is to study the winning decks, for the sake of simplicity
from now on in our presentation let us focus only on strings generated by
winning decks, if not differently indicated.

In the winning strings the value 2 is always the final component. Consequently,
the number of all the potential winning strings is given by

Sm·s =
(n− 1)!

(s!)m−1 · (s− 1)!
. (14)

If we had a bijective correspondence among the winning decks and the poten-
tial winning strings, we should know the number of winning decks and thus
the winning probability, dividing Sm·s by the number of all the possible decks:

(n− 1)!

(s!)m−1 · (s− 1)!
· (s!)m

n!
=

s

n
=

1

m
. (15)

Unfortunately, we cannot have bijection. For the sake of simplicity, let us

consider the case m = 2 , s = 3. Among the
6!

(3!)2
= 20 decks, only four

of them win. Here we show the winning decks and the associated strings (or
reformed decks):

the string 111222 is generated by the deck 111222;
the string 112122 is generated by the deck 112212;
the string 121122 is generated by the deck 122112;
the string 211122 is generated by the deck 221112.
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The potential winning reduced strings are, in this case,
5!

(3!) · (2!)
= 10:

{221112} ; {212112} ; {211212} ; {211122} ; {122112} ;

{121212} ; {121122} ; {112212} ; {112122} ; {111222} .

Actually, only the fourth, the seventh, the ninth and the tenth are generated
by winning decks. However, even if we cannot have bijection between winning
decks and potential winning reduced strings, we can use formula (15) as a
rough upper bound for P (Cmax).

This estimate can be highly improved, by means of Čebishev and Markov
inequalities. This is the subject of a paper in preparation.

When we associate to a winning deck a string we have a very deep information
related to the fact that the procedure of string generation is (using a physical
language) reversible: knowing the generated string, we can rebuild the original
deck. Considering example (13 a)) (m = 7 , s = 4), let us consider a vector
with 28 components. Let us put in the fourth component the first element
of the string, i.e., the first stored card, which is clearly a ”four”. Then we
will put in the (4 + 5 =) ninth component the second stored card, i.e., a
”five” and so on. When the counting arrives at 28, or, in general, at m · s,
we restart our counting from the first component, taking into account only
the zero components, inserting the first 27 stored cards. The last card, i.e., a
”two”, will be put in correspondence with the last zero component. In this way
we have rebuilt the original winning deck from the winning reduced string.

The backward approach can thus provide a very efficient method for the study
of the winning decks, highly more efficient than the Monte Carlo simulations.

The technique, implemented in a computer program, rebuilds strings of con-
tinuing increasing length (up to the winning strings of length n, or n-strings),
storing in data files only those ones so that the sub-decks, rebuilt from them,
win playing (HLM)2N , i.e., store all the cards but the final ”two”. The pro-
gram, starting from a k-string, read in a data file, builds all the (k+1)-strings,
obtained adding at the beginning of the actual k-string all the allowed values
from 1 to m; rebuilds the corresponding sub-decks; plays with the sub-decks.
If a sub-deck sets aside all the cards, except for a ”two” and generates the
original string, the program stores the corresponding winning (k + 1)-string.

More precisely, the algorithm is the following: starting from the last ”two”, we
proceed backward, building all the sub-strings of increasing length that can
guarantee the storing of all the cards, apart from the last ”two”. Obviously,
the last stored card can be only an ”ace” or a ”two”; similarly, the last but
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one can be only an ”ace” or a ”two”: the drawing of a ”three” as the last but
one stored card is excluded by Remark (2.1). Continuing our reasoning, the
last but two stored card can be only an ”ace”, a ”two” or a ”three”, the last
but three an ”ace”, a ”two”, a ”three” or a ”four” and so on, up to the last
but (m− 1) stored card, which cannot assume a value greater than (m− 1).
From the last but m stored card on, every card value is admitted.

Practically, let us recall that in the winning reduced n-strings the last position
must be occupied by a card whose value is ”two” and that, in order to have
winning strings (since the strings of length k ≤ m (or k-strings), cannot be
occupied by a card whose value is greater or equal to k), the position just
before the last ”two” can be occupied only by an ”ace” or a ”two”; thus
we have only two winning final strings of length two: 12 and 22, which are
respectively generated by the sub-decks 12 and 22.

The final strings of length three can be four: 112 ; 212 ; 122 ; 222. Clearly,
the choice of these strings is related to s. If, for example, s = 2, the fourth
string must be excluded, because it contains three identical cards.

Each one of these strings is in a one-to-one correspondence with a sub-deck
generating it. In fact
from the string 112 we build the sub-deck 112, which generates the string 112 ;
from the string 212 we build the sub-deck 221, which generates the string 212 ;
from the string 122 we build the sub-deck 122, which generates the string 122 ;
from the string 222 we build the sub-deck 222, which generates the string 222 .

When we pass to the final strings of length four we have 12 possibilities:

1112 ; 2112 ; 3112 ; 1212 ; 2212 ; 3212 ; 1122 ; 2122 ; 3122 ; 1222 ; 2222 ; 3222 .

While we can associate to eight of them the corresponding generating winning
deck, according to the following list:

the sub− deck 1112 generates the string 1112 ;

the sub− deck 2211 generates the string 2112 ;

the sub− deck 1221 generates the string 1212 ;

the sub− deck 2132 generates the string 3212 ;

the sub− deck 1122 generates the string 1122 ;

the sub− deck 2212 generates the string 2122 ;

the sub− deck 1222 generates the string 1222 ;

the sub-deck 2222 generates the string 2222 ;

(16)
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we realize that the strings 3112 ; 2212 ; 3122 ; 3222 have no corresponding
winning deck. In fact, considering, for example, the string 3122, the deck
generating it must have in the third position the card ”three”; in the fourth
position the card ”ace” and, having no other components after, the second
”ace” must be put in first position. Consequently, the card ”two” must be put
in the only place remained, that is in the second position. So the generating
deck should be 1231. But it is evident that this deck, instead of the considered
string, generates the loosing string formed only by an ”ace”, without any other
coincidences.

Moreover, to the string 2212 corresponds the deck 1222, which generates the
string 1222, which is still a winning string, but different from the original
one. This last consideration shows that there is no bijective correspondence
between decks and strings: if every deck generates only one string, the reverse is
in general not guaranteed: the same deck can be rebuilt from different strings!

In order to avoid these situations, the algorithm we have implemented contains
a test where we check if the original string coincides with the reformed string
obtained from the deck given back by the original string. Otherwise the string
must be discarded.

Continuing the procedure, we select winning strings of continuing increasing
length with the fundamental restriction that they must be generated by a
deck, following the rules of (HLM)2N .

In order to save disk usage, the strings are stored as ”characters” in the FOR-
TRAN data files. Any idea regarding further memory saving improvements
would be welcome.

By virtue of this technique we have been able to show that (SC) is true at
least up to the case of French cards (m = 13 , s = 4), finding, in less than
one second, four winning decks. The first winning deck of French cards found
by the computer is the following:

7 9 5 9 7 3 8 6 6 2 5 12 11
4 12 9 7 7 10 2 4 5 3 11 13 2
4 4 11 13 3 6 10 10 10 3 5 12 2
1 1 1 1 12 9 11 13 8 8 6 8 13 ,

while the first deck of Italian cards (m = 10 , s = 4) is

6 8 9 7 5 5 3 6 6 10
2 7 4 7 4 10 2 8 5 3
9 2 4 4 3 6 10 7 10 3
5 2 1 1 1 1 9 9 8 8 .
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The search for at least one winning deck is, in general, very fast. But, as
shown in Table 2, we have, in many cases, found also the exact number of
winning decks. Let us remark the fact that for the case m = 10 , s = 2 (in
comparison with un unsuccessful research of winning decks with Monte Carlo
methods, after more than 6 · 1011 simulations) we gained all the 656 winning
decks, by virtue of the backward technique, in less than one second.

Let us apply this method to prove the following

Theorem 4.1 For s = 2 , m = 3, 4, 5 there are no winning decks. For s =
2 , m = 6 there exists only one winning deck.

Proof Let us first consider strings with an arbitrary m and s = 2. Following
the above described procedure, we must build all the winning strings of length,
respectively, 3 × 2 = 6 ; 4 × 2 = 8 ; 5 × 2 = 10 ; 6 × 2 = 12, where, as
already remarked, the last position must be occupied by a ”two”. According
to the list (16) and recalling that s = 2, the 4-strings we are interested on
are 2112 ; 1212 ; 3212 ; 1122. These 4-strings generate only the following 5-
strings: 32112 ; 42112 ; 31212 ; 41212 ; 13212 ; 33212 ; 43212 ; 31122 ; 41122.
Among them, only 42112 ; 31212 ; 13212 are generated by decks (respectively
21142 ; 21312 ; 12132). Continuing backward, we arrive at nine strings of
length 6:

342112 ; 442112 ; 542112 ; 331212 ; 431212 ; 531212 ; 313212 ; 413212 ; 513212 ;

among them, only one (431212) is generated by a deck: 312421, which con-
tains a ”four”. Thus, there are no winning 6-strings (and, consequently, win-
ning decks) for s = 2 , m = 3. Let us now build the four final 7-strings:
3431212 ; 4431212 ; 5431212 ; 6431212. Among them, only two are generated
by decks:

3431212 is generated by 2133124;
5431212 is generated by 2421531.

Continuing: among the 9 strings of length 8, only four are generated by decks:
63431212 is generated by 33124621;

35431212 is generated by 31324215;
45431212 is generated by 53142421;
65431212 is generated by 21531624.

All of them contain cards whose value is greater than 4. Consequently, there are

no winning decks for m = 4 , s = 2. The nine 9-strings generated by decks are:

563431212 is generated by 462153312;

663431212 is generated by 246216331;
435431212 is generated by 215431324;
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345431212 is generated by 213531424;
545431212 is generated by 242155314;
845431212 is generated by 314242185;
365431212 is generated by 243215316;
665431212 is generated by 316246215;
765431212 is generated by 531624721.

In order to conclude the proof, let us now consider only strings where the cards

assume at most value ”six”. Among all the 51 10-strings, only 17 are formed
with cards whose value is at most ”six”. The strings generated by decks are
21. Among them, only 7 are formed with cards whose value is at most ”six”:

4563431212 is generated by 3124462153;

5563431212 is generated by 3312546215;
4663431212 is generated by 3314246216;
6345431212 is generated by 3142462135;
4365431212 is generated by 3164243215;
5365431212 is generated by 5316524321;
4665431212 is generated by 2154316246.

All of them contain at least one ”six”. Consequently, there are no winning

decks for m = 5 , s = 2. Finally, iterating the procedure only for cards whose
value is at most ”six”, we arrive at 13 12-strings. Among them, only one,
534665431212, is generated by a deck: 316254632154. Then, for m = 6 , s = 2,
there is only one winning deck.

In Table 2 we report the number of winning decks for s = 2, 3, 4.

Finally, recalling that in Remark (2.1) we have already shown that, for s = 1,
it is not possible to reach Cmax, we can, however, determine the best reach-
able score. Table 3 shows the best results obtained by virtue of a modified
version of the computer program explained in this Section. The results we
have achieved following this method coincide with the best scores obtained
with Monte Carlo simulations when the number m is sufficiently small. For
larger m, the simulations need too much time to reach the best score, while
the backward method arrives at the correct answer very quickly.

5 Applications to the game Mousetrap

As already remarked in the Introduction, there are few results related to the
game Mousetrap. In particular, there are no (even approximated) formulas
giving the probability of winning decks. The algorithm introduced in the pre-
vious Section, adequately adapted to this game, allows us to obtain not a
closed formula, but a sequence of values, giving the number Nmax,m·s of win-
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ning decks and, consequently, the probability Pmax,m·s for different values of
m and s.

The main change consists in allowing the last card to assume whatever value,
as allowed by the rules of this game.

Up to now, according to [4], [15], [16], [17], the sequence of values of Pmax

was obtained only for s = 1 and up to m = n = 13. In [17] this sequence
can be read in A007709 and can easily produce the sequence A007711 of non-
winning decks (or unreformed decks), because their number is, obviously, equal
to n!−Nmax,n.

According to Kok Seng Chua [4], this sequence has been obtained playing
with all the n! = m! decks, by means of a computer program generating all
the permutations of a set of n elements.

Our new technique allows us to obtain the same results very quickly (my PC
yielded the exact number of winning 13-decks in 25 minutes, in comparison
with one week job used by K.S. Chua [4]) and to extend the sequence, for
s = 1, up to m = 16.

The new sequence of reformed decks (starting from n = 1), quoted in [17] as
A007709, is thus

1 ; 1 ; 2 ; 6 ; 15 ; 84 ; 330 ; 1,812 ; 9,978 ; 65,503 ; 449,719 ; 3,674,670 ;

28, 886, 593 ; 266, 242, 729 ; 2, 527, 701, 273 ; 25, 749, 021, 720

while the sequence of unreformed decks (i.e., the total number of non winning
decks), quoted as A007711, is now

0 ; 1 ; 4 ; 18 ; 105 ; 636 ; 4,710 ; 38,508 ; 352,902 ; 3,563,297 ;

39,467,081 ; 475,326,930 ;6,198,134,207 ; 86, 912, 048, 471 ;

1, 305, 146, 666, 727 ; 20, 897, 040, 866, 280

(the values in boldface were already quoted in [17] or in [4]).

We adapted the backward technique to the game Modular Mousetrap, too.
Though experimentally the number of winning decks grows with m much
faster than at Mousetrap, nevertheless the new technique has proved to be
very powerful, for Modular Mousetrap too, as shown in Table 5, substantially
improving the results obtained in [9].

Furthermore, we have obtained a huge amount of results in the ”multisuit”
Mousetrap (s > 1), arriving, just as a test of the efficiency of the new technique,
at s = 2 , m = 9 ; s = 3 , m = 6 ; s = 4 , m = 5 for Mousetrap and at
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s = 1 , m = 13 ; s = 2 , m = 7 ; s = 3 , m = 5 ; s = 4 , m = 4 for Modular
Mousetrap.

These results, shown in Tables 4 and 5, can be extended to the cases s > 4
and, by means of parallel computing, to higher values of m.

Remark 5.1 Let us denote with PM,m·s(k) and PMM,m·s(k) the probability of
storing k cards, respectively at Mousetrap and Modular Mousetrap. As already
observed in [9], at Modular Mousetrap, when s = 1 and m is prime, every deck
which is not a derangement is a winning deck, because the cards have no
possibilities to end in a loop. Consequently, while, if m is not prime, there
is no a priori rule showing what is the winning probability, Table 5 shows
that, when s = 1 and m is prime, it is very easy to know the exact winning
probability:

PMM,m(m) = 1− PMM,m(0) ∀m prime .

Thus, knowing the sequence [17] A002467 of permutations with at least one

fixed point, we immediately obtain the sequence of numbers of winning decks,
for n prime: 224,837,335,816,336 for n = m = 17 ; 76,894,368,849,186,894

for n = m = 19 and so on. For these cases the backward technique should

have proved to be computationally too costly, for a single PC. Let us remark
that, when n is prime, all the k-strings, with k ≤ n, cannot end in any loop,
i.e., are winning strings and must be stored. Consequently, in our rebuilding

procedure, we must examine all the n ·(n−1) ·(n−2) · ... ·(n−k+1) =
(

n
k

)
k!

k-substrings and, in particular, all the n! strings of length n. Thus, playing
Modular Mousetrap, when n is prime, our method coincides with Chua’s tech-
nique, consisting in the analysis of all the n! permutations. Since, by Lemma

(2.1), the probability of derangement for the games Mousetrap (M) and Mod-
ular Mousetrap (MM) is

PM,m(0) = PMM,m(0) =
m∑

k=0

(−1)k

k!
(17)

and

lim
m→∞PM,m(0) = lim

m→∞PMM,m(0) = e−1 ∼ 0.367879441 ,

it follows that, at Modular Mousetrap, lim
m→∞PMM,m(m) = 1−1

e
∼ 0.632120559,

if we consider only the sequence of prime numbers m (see Table 5). For the

other values of m, the winning probability seems to oscillate and tend to zero
very slowly, when m →∞.
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It is important to remark that, since our technique starts just from a permu-
tation and tries to rebuild the deck from which the permutation is reformed,
the backward technique can be easily adapted to check if any particular per-
mutation is a reformed deck. In particular, we can very easily give, for every n,
the deck producing as reformed permutation the identity 1 2 · · · n, giving a
positive answer to the original question by Cayley [2] (“investigate, whatever
the number n of cards is, which permutations throw out the cards in the same
order of their numbers”).

Here we report the sequence of the requested decks up to n = 13, but it is a
matter of seconds to find the answer for every value of n.

1 [Ca] ; 1 2 [Ca] ; 1 3 2 [Ca] ; 1 4 2 3 [Ca] ; 1 3 2 5 4 [Ca] ;

1 4 2 5 6 3 [Ca] ; 1 5 2 7 4 3 6 [Ca] ; 1 6 2 4 5 3 7 8 [Ca] ;

1 4 2 8 6 3 7 9 5 ; 1 8 2 9 7 3 10 5 6 4 ; 1 10 2 9 6 3 5 8 7 4 11 ;

1 6 2 7 5 3 11 12 8 4 9 10 ; 1 8 2 5 10 3 12 11 9 4 7 6 13 .

We have inserted the symbol [Ca] to indicate the permutations originally ob-
tained by Cayley in [2].

In the web site

http://www.dmmm.uniroma1.it/∼bersani/mousetrap.html

it is possible to read the decks up to n = 100 and it is possible to build new
ones, by means of a specific FORTRAN file.

Remark 5.2 The new technique becomes computationally expensive when
either m or s grows too much and we cannot achieve the number of winning
decks for all the cases considered in Tables 4 and 5. However, we have esti-
mated, by means of Monte Carlo simulations, the winning probability for all
the missing cases (up to m = 13 , s = 4).

It is worthy to note that, playing multisuit Modular Mousetrap, when m is
prime, we can only store k ·m cards (k = 0, 1, ..., s). In this case, we experi-
mentally observe that

lim
m→∞PMM,m(m · s) ∼ 0.52 if s = 2

lim
m→∞PMM,m(m · s) ∼ 0.48 if s = 3

lim
m→∞PMM,m(m · s) ∼ 0.46 if s = 4 .

The reason for these asymptotic values is, up to now, not clear. On the other

hand, when m is not prime, there are decks which store a number of cards
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strictly lying between zero and m · s. In these cases, from Table 5 we can
note that, for s fixed, the higher the number of divisors of m is, the lower
the winning probability is. This is related to the fact that the deck has more
chances to end in a loop than decks with less divisors.

6 Searching for reformed decks

Thanks to its efficiency, the new technique has proved to be extremely useful
when applied to the study of reformed decks (or reformed permutations):
as already recalled, when a deck wins at Mousetrap, Modular Mousetrap or
(HLM)2N , it generates a new deck which is called reformed deck. We can
play again with this new deck in order to check if it will win again.

When we can repeat this operation k times, we will define k-times reformable
deck the original deck and k-reformed deck the permutation obtained in the
k-th reformation.

The reformation mechanism can produce peculiar situations like cycles.

A cycle is a sequence of reformed decks where one reformation coincides with
one of the previous reformations (not necessarily the original deck). We classify
the cycles more clearly in the second part of this Section, devoted to Modular
Mousetrap.

Guy and Nowakowski [9] first proposed the study of reformed decks posing
the following questions:

3) characterize the reformed permutations;

4) for a given n, what is the longest sequence of reformed permutations?

5) are there sequences of arbitrary length? are there any non trivial cycles,
i.e., cycles other than

1 → 1 → 1 ... and 1 2 → 1 2 → 1 2 ... ?

6) in Modular Mousetrap are there k-cycles for every k? what is the lowest
value of n which yields a k-cycle?

Playing Mousetrap, they investigated the cases s = 1 ,m ≤ 9. They achieved
at most 3-reformed decks and did not find any non trivial cycle.

K. S. Chua [4] achieved a substantial improvement for the game Mousetrap
finding for the first time a 4-reformed deck, for s = 1 , m = 11. His results are
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quoted by Sloane [17] in the sequences A007711, A007712, A055459, A067950.

Here we further improve these results, extending the sequences A007711,
A007712, A055459, A067950 up to m = 16 for Mousetrap, obtaining for the
first time a 5-reformable deck:

1 16 12 15 6 8 14 10 9 3 4 11 13 2 7 5

for m = 16. With the new results, reported in Table 6, the first terms of the
sequence of numbers of 4-times (but not 5-times) reformable permutations are

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 4, 14 , 57 .

They are now classified on [17] as sequence A127966.

The discovery of the 5-reformed permutation represents an important step in
the direction of a positive answer to question 5).

How many chances do we have to find 6-reformed decks?

The answer must be related to the probability PM,m·s(m ·s), given by the ratio
between the number of reformed decks and the number of all the permutations
of the deck.

We can give a rough estimate of the number of at least k-reformed decks
multiplying the number of at least (k − 1)-times reformable permutations by
PM,m·s(m · s). Obviously, the probability to obtain a reformed deck is, in gen-
eral, not equal to the probability to obtain from all the reformed decks a
2-reformed one and, in general, from all the decks reformed at least k times,
a (k + 1)-reformed one. But experimentally all these probabilities are compa-
rable. For example, indicating with N≥k,m·s the number of decks which are at
least k-reformable, we have, in the case s = 1 , m = 16,

PM,16·1(15) =
N≥1,16·1

16!
∼ 0.00123 ;

N≥2,16·1
N≥1,16·1

∼ 0.00124 ;
N≥3,16·1
N≥2,16·1

∼ 0.00127 ;

N≥4,16·1
N≥3,16·1

∼ 0.00143 ;
N≥5,16·1
N≥4,16·1

∼ 0.0172 .

Multiplying the numbers N≥k,16·1 by PM,16·1(16) ∼ 0.00123, the estimates for
the number of k-reformed decks (apart from the very peculiar case of k = 5)
are very close to the real values quoted in Table 6.

The estimate 0.06 for the number of 5-reformed decks, obtained multiplying
the number of 4-reformed decks by PM,16·1(16), was still too small to expect
a 5-reformed deck. Nevertheless we fortunately and unexpectedly found the

24



first (and up to now unique) 5-reformable deck

1 16 12 15 6 8 14 10 9 3 4 11 13 2 7 5 .

Clearly, for m ≤ 16 we know the exact value of PM,m·s(m ·s), together with the
exact number of k-reformed decks, too. But when we have no information on
the number of k-reformed decks, knowing even only an estimate of PM,m·s(m ·
s) could allow us at least roughly to predict for which value of m we can
expect the first 6-reformed decks. To this aim, thanks to their high reliability,
Monte Carlo simulations considerably help to know the estimate of PM,m·1(m)
with sufficiently high accuracy. We have estimated, by means of Monte Carlo
simulations, the winning probability for 17 ≤ m ≤ 35. Analyzing the evolution
of the values of PM,m·1(m), we can make a prediction on the order of number
of k-reformed decks, for values of m that we have not yet studied with our
technique.

Our prediction strongly depends on the competition between the growth rate
of NM,m·s and the decrease rate of PM,m·s(m · s).

The crucial observation is based on the fact that, up to now, for every 7 ≤
m ≤ 35

0.6 ≤ PM,(m+1)·1(m + 1)

PM,m·1(m)
≤ 0.7 .

Starting from the experimental observation that varying k the ratios
N≥(k+1),m·1

N≥k,m·1
are quite identical for the same m, we can obtain a rough estimate N e

≥k,m·1 of
the number of decks k-reformed (k ≥ 6) through the value

N e
≥k,m·1 = m! · (PM,m·1(m))k , (18)

the rough estimate of the number of 6-reformed decks can be computed mul-
tiplying the number m! of decks by [PM,m·1(m)]6.

We obtain

PM,17·1(m) ∼ 0.00077 ; N e
≥6,17·1 ∼ 0.000074 ;

PM,18·1(m) ∼ 0.00050 ; N e
≥6,18·1 ∼ 0.00010 ;

PM,19·1(m) ∼ 0.00031 ; N e
≥6,19·1 ∼ 0.00011 ;

PM,20·1(m) ∼ 0.00021 ; N e
≥6,20·1 ∼ 0.00021 ;

PM,21·1(m) ∼ 0.00013 ; N e
≥6,21·1 ∼ 0.00025 ;

PM,22·1(m) ∼ 0.000081 ; N e
≥6,22·1 ∼ 0.00032 ;

PM,23·1(m) ∼ 0.000052 ; N e
≥6,23·1 ∼ 0.00051 ;
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PM,24·1(m) ∼ 0.000034 ; N e
≥6,24·1 ∼ 0.00096 ;

PM,25·1(m) ∼ 0.000021 ; N e
≥6,25·1 ∼ 0.0013 ;

PM,26·1(m) ∼ 0.000013 ; N e
≥6,26·1 ∼ 0.0019 ;

PM,27·1(m) ∼ 0.0000084 ; N e
≥6,27·1 ∼ 0.0038 ;

PM,28·1(m) ∼ 0.0000054 ; N e
≥6,28·1 ∼ 0.0076 ;

PM,29·1(m) ∼ 0.0000034 ; N e
≥6,29·1 ∼ 0.0014 ;

PM,30·1(m) ∼ 0.0000022 ; N e
≥6,30·1 ∼ 0.030 ;

PM,31·1(m) ∼ 0.0000014 ; N e
≥6,27·1 ∼ 0.062 ;

PM,32·1(m) ∼ 0.00000087 ; N e
≥6,32·1 ∼ 0.11 ;

PM,33·1(m) ∼ 0.00000055 ; N e
≥6,33·1 ∼ 0.24 ;

PM,34·1(m) ∼ 0.00000036 ; N e
≥6,34·1 ∼ 0.64 ;

PM,35·1(m) ∼ 0.00000023 ; N e
≥6,35·1 ∼ 1.53 .

(the study of greater values of m is still under investigation). Thus we can
reasonably expect the first 6-reformed permutations for 32 ≤ m ≤ 35.

In general we have the following

Theorem 6.1 If

0.6 ≤ PM,(m+1)·1(m + 1)

PM,m·1(m)
∀m ≥ 7 (19)

then there exists m = m(k) such that

N e
≥k,m·1(m) ≥ 1 ∀m ≥ m .

Proof Let us indicate with me the highest value for which it is known (by
means of Monte Carlo simulations) the estimate of PM,me·1(me) (up to now
me = 35). Thus, by virtue of (19),

PM,m·1(m) ≥ (0.6)m−me · PM,me·1(me) ∀m > me . (20)

From (18) it follows

N e
≥k,m·1 ≥ m! · (PM,me·1(me))

k ·
[
(0.6)m−me

]k ∀m > me . (21)

The right hand side of (21) is greater than 1 if and only if

m! ·
[
(0.6)k

]m ≥
[
(0.6)mek

]

(PM,me·1(me))
k .
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Once fixed k and me, the right hand side of (21) is a constant. Since

an · n! −→n→∞ ∞ ∀a > 0 , (22)

we have the thesis.

Remark 6.1 Theorem (6.1) tells us that, under hypothesis (19), we can rea-
sonably expect a positive answer to question 5). The importance of hypothesis

(19) can be read in the limit (22) which cannot be used if

PM,(m+1)·1(m + 1)

PM,m·1(m)
→ 0 for m →∞ .

Finally, lower bound 0.6 in (19) is given experimentally. Theorem (6.1) is still
valid putting the more general hypothesis

∃α > 0 s.t. 0 < α ≤ PM,(m+1)·1(m + 1)

PM,m·1(m)
∀m ≥ 7

uniformly with respect to m.

The extension of our analysis to s > 1 confirms the above presented arguments
proposed concerning the relationship between PM,m·s(m·s) and the appearance
of k-reformed decks.

Also in this case, in order to look for 4-reformed permutations, we can compare
the growth rate of NM,m·s and the decrease rate of PM,m·s(m · s). In the most
advanced cases we have examined (i.e., m = 9 , s = 2 ; m = 6 , s =
3 ; m = 5 , s = 2) we found a large number of 3-reformed decks. Though
PM,m·s(m · s) was rapidly decreasing, we expected 4-reformed decks already
for s = 2 , 9 ≤ m ≤ 11; s = 3 , 7 ≤ m ≤ 9; s = 4 , 7 ≤ m ≤ 8. In fact very
recently we studied the case m = 9 , s = 2 and we found four 4-reformed
decks:

2 5 1 9 5 7 2 9 3 7 8 6 6 8 4 3 1 4

6 9 8 8 5 7 2 1 1 9 2 5 4 3 4 7 6 3

5 4 2 1 8 7 3 8 5 1 9 6 3 6 9 7 4 2

1 3 9 6 4 5 7 1 2 5 8 2 8 6 9 4 3 7

Let us observe that, for m = 3 , s = 4, we found the first (and up to now
unique) non trivial 1-cycle: 1 1 1 1 2 2 3 2 2 3 3 3. Consequently, the second part
of question 5) receives a positive answer, but only in a “multisuit” framework,
while a negative answer is highly probable for s = 1.
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For what concerns reformed decks and cycles, Modular Mousetrap is much
more intriguing. First we will need some terminology, in order to distinguish
the different situations we will deal with.

We can interpret the reformation sequences as Discrete Dynamical Systems
[1], [20], where every reformation A is a state and the deck preceding it is a
pre-image of A. As shown by the deck 1 2 3 ... n, a deck A may have several
different pre-images (their total number is the in-degree of A).

Decks without pre-images are known as Garden of Eden states.

Besides the k-reformed decks we must consider the cycles.

When a trajectory encounters a state that occurred previously, we have a
cycle. The trajectory leading to the cycle is called transient or pre-period. The
period of a k-cycle is the number k of states in it.

A 1-cycle can be seen as a fixed point of the dynamical system. The deck
1 2 3 ... n generates a 1-cycle, i.e., is a fixed point.

If the k-th reformation coincides with the h-th reformation (1 ≤ h < k), we
will divide the total k-trajectory into two parts:

i) a h-pre-period, where there is a sequence of h reformations;

ii) a (k−h)-cycle, starting from the h-th reformation and stopping at the k-th
reformation, which coincides with the h-th one.

Guy and Nowakowski analyzed ”by hand” all the reformed permutations for
s = 1 , m ≤ 5. Clearly, this analysis cannot be easily performed for greater
values of m. Indeed, for m = 6, they considered only decks where the first
card is an “ace”.

We have improved their results to many more cases and to 1 < s ≤ 4, as
shown in Tables 10− 13.

Thanks to the high winning probability, in particular if n is prime, the game
Modular Mousetrap has produced many interesting and intriguing results. In
particular, we obtained very long sequences of reformed decks and cycles; the
reason for it must be found in the fact that, as already remarked, in this game,
when n is prime, we always have either a winning deck or a derangement
and that the probability to find a winning deck is very high (see Table 5).
Consequently, in this case it is very easy to obtain a reformed one from a
deck. Due to the highly increasing number of permutations when m grows, we
were able to study all the decks in Modular Mousetrap, for s = 1, only up to
m = 13.
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The most complete and exhaustive investigation has been performed for s =
1, m = 11 and s = 1, m = 13.

Table 10 shows the huge increase of the number of cycles, with respect to
smaller values of m. For m = n = 11, as shown in Table 14, we found the six
203-trajectories, starting respectively from

1 11 5 8 2 6 9 4 7 10 3 ; 1 11 5 8 2 6 9 10 7 4 3 ; 1 11 5 9 2 6 10 8 7 4 3 ;

1 11 5 8 2 6 4 9 7 10 3 ; 1 11 5 8 2 6 4 9 10 3 7 ; 1 11 5 9 2 6 8 10 7 4 3 ,

which, after 137 reformations, reach the state

1 2 3 4 7 5 6 8 9 10 11

which produces a 66-cycle.

For m = 13 the length of reformed decks grows: we have found eleven 51-
reformable decks. One of them is

6 2 5 11 1 8 13 12 7 9 10 3 4 .

Longest cycles were discovered for m = 13, too: the deck

1 2 6 13 3 9 5 12 10 8 7 11 4

is characterized by a very long trajectory: after a 839-pre-period we obtain
the deck

1 2 3 4 5 6 7 8 9 10 11 12 13

and the trajectory ends in a 1-cycle.

Curiously, for m = 11 the decks gave only 1, 2, 3, 4, 14, 15 and 66-cycles. The
number of decks entering in a 66-cycle is very high: 1, 701, 937. For m = 13
we found only 1, 2, 3, 6, 7 and 12-cycles.

Since we expect to achieve many more interesting results whenever n is prime,
we have also examined the first 50 million reformed decks for s = 1 and m = 17
and the first 320 million reformed decks for s = 1 and m = 19.

We can understand the exhaustiveness of Modular Mousetrap considering that
in our investigations, though we analyzed only few decks among all the 17! ∼
3.56 · 1014 permutations and the 19! ∼ 1.22 · 1017 permutations, we obtained
again a 51-reformed deck for s = 1 , m = 17, as for s = 1 , m = 13, and,
mainly, a 39924-trajectory, ending in the trivial 1-cycle, from the deck

1 16 11 14 9 8 4 2 5 15 13 6 12 3 10 7 17

(clearly, we did not check the correctness of all the reformations, but we have
sufficiently tested the computer program to believe it!).
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Moreover, we found two 267-trajectories which, starting respectively from the
decks

1 14 15 6 9 13 7 2 11 4 5 12 17 10 3 8 16 ; 1 3 8 14 15 6 9 13 7 2 11 4 5 12 17 10 16

which, after 58 reformations, reach the state

1 7 3 8 2 9 12 14 4 15 16 10 11 5 6 17 13

which produces a 209-cycle.

Consequently, it is highly probable that the above mentioned scores could be
improved, if we would study more cases for s = 1, m prime and m > 13.

Concerning the 1-cycles, for s = 1 there is no evidence of other cycles than
the trivial one (1 2 · · · m). When we pass to “multisuit” Modular Mousetrap,
we not only have the trivial 1-cycle 1 2 · · · m 1 2 · · · m · · · 1 2 · · · m, but
several other non trivial 1-cycles whose structure in general seems not to have
any regularity: for example, the decks

1 1 2 2 ; 1 3 1 2 2 3 ; 1 4 3 1 2 2 3 4 ; 1 6 3 4 5 1 2 2 3 4 5 6 ; 1 3 4 5 1 2 2
3 4 5 ;

2 7 6 5 7 1 3 2 4 3 4 5 6 ; 2 6 6 5 7 1 1 3 2 4 3 4 5 7 ; 2 5 6 5 7 1 1 3 2 4 3 4
6 7 ; 2 7 6 5 1 1 3 5 2 4 3 4 6 7 ;

3 6 3 2 4 4 5 1 7 1 2 5 6 7 ; 1 3 4 5 6 7 1 2 2 3 4 5 6 7 ; 1 3 5 3 2 1 4 6 5 2
4 6 7 7 ;

1 1 1 2 2 2 ; 1 3 1 2 2 3 1 2 3 ; 1 1 1 2 2 3 3 2 3 etc.

are fixed points.

Up to now, we have achieved the greatest number of 1-cycles for s = 3 , m = 5
and for s = 4 , m = 4, where we found ten different 1-cycles. Since the two
cases are the most advanced in our studies, we can suppose that we could
obtain greater numbers of non trivial 1-cycles if we would continue our analysis
for higher values of m.

The explosion of the number of k-cycles and k-reformed decks, already for
s = 1, allows us to give a partial answer to questions 5) and 6) for Modular
Mousetrap, as shown in Table 18. However, the results reported in this table
seem to suggest a positive answer to the first part of question 6).

Due to the difficulty of reporting all the results for Modular Mousetrap, we
have built the web page
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http://www.dmmm.uniroma1.it/∼bersani/mousetrap.html

where we show the numbers of trajectories, pre-periods, cycles and reformed
decks for the different values of m and s we investigated. The page is still
under construction and many documents are still written in Italian, but the
meaning of the results is clear.

We extended the study of reformed decks to the game (HLM)2N , too.

We can repeat the considerations related to the connection between the ap-
pearance of k-reformed decks and the probability to obtain the best score,
which we indicate with Pmax := P (Cmax). Knowing the low probability to
have winning decks at (HLM)2N (see Table 2), we cannot expect to easily
attain k-reformed decks, with k ≥ 2, at this game.

In fact, Table 19 shows that, excluding the trivial 1-cycles 1 1 · · · 1 and
1 1 · · · 1 2 2 · · · 2 , there is no evidence of k-reformed decks (k ≥ 2), apart
from the unique, very special case m = 2 , s = 4, where we attained the
following four 2-times reformable decks:

2 2 2 2 1 1 1 1 ; 1 2 2 2 2 1 1 1 ; 1 1 2 2 2 2 1 1 ; 1 1 1 2 2 2 2 1 .

The very fast decrease of Pmax, when m grows, seems not to allow us obtaining
2-reformed decks in other cases.

Thus, we have focused on the reformed decks satisfying (WC), instead of (SC).
As shown in Table 20, we have found new 2-reformed decks only in the cases
s = 4 , 4 ≤ m, where the growth rate of the number of total reformed decks
is sufficiently high to compensate the decrease of the probability Pmax(WC)
and to produce decks satisfying (WC). Since Pmax,6·4(WC) ∼ 4 · 10−8, it is an
open question if it is possible to obtain 3-reformed decks for higher values of
m.

The case s = 1 has been studied only for 1 ≤ m ≤ 4, because, as shown by
the author (Table 3), (WC) is satisfied only for these values of m. For m = 1,
the unique deck 1 is a 1-cycle. For m = 2, we have only the 1-cycle 1 2 .
For m = 3 we have two 1-reformable decks: 1 3 2 and 3 2 1 . For m = 4 we
have only the 1-reformable deck 2 1 3 4 .

As already remarked, the existence of sequences of arbitrary length is still an
open problem for Mousetrap. Thus, in some sense, it can be considered on
the boundary between the classes of games producing reformed decks and of
games without reformed decks.
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7 Conclusions and further developments

The backward technique here introduced has proved to be very powerful for the
study of the games He Loves Me, He loves Me Not, Mousetrap and Modular
Mousetrap and in particular for what concerns the reformed permutations.
Clearly, it can give only the number of winning decks, without any possibility
of reaching a closed formula. But the complexity of the game studied is so
high making it very difficult to expect finding general closed formulas. In fact,
as already remarked, only partial results have been obtained in the previous
literature.

The contraindication of this backward method (which consists in rebuilding
the winning decks starting from strings, of increasing length, formed by the
last stored cards in the decks) is related to disk usage problems: in order to
build all the strings of length (k+1), the program needs to store all the strings
of length k.

Even if we should not be interested in the storage of all the winning decks,
but only in their number, in our FORTRAN program it is however necessary
to store all the winning (n− 2)-strings.

In the game Mousetrap, for m = 16 , s = 1, the storage of all the winning
(n − 3 = 13)-strings needed a 325 GB memory, while the storage of all the
winning (n− 2 = 14)-strings needed a 596 GB memory.

Moreover, in the case of French cards (m = 13 , s = 4), considering the growth
rate of the number of winning cards at (HLM)2N when m grows, for s = 4,
we should expect, in the most cautious estimate, at least 1024 winning decks.
A number absolutely unreasonable, for an actual PC.

Certainly, the usage of parallel computers or (as actually done playing the
games in the most advanced cases) the storage of all the k-strings in several
data subfiles, which can be processed separately, can help the search of all the
winning decks for increasing values of m and/or s.

Anyway, the importance of the technique consists first in having shown that
(SC) is true at least for m = 13 , s = 4 (but the test can be performed for
much larger decks). The growth rate of the number of winning decks allows us
to suppose that (SC) is true for every value of m and s, though the winning
probability decreases with m. However this technique cannot give a definitive
positive answer to (SC) for every value of m and s.

Moreover, up to now, the backward technique seems to be the unique one
capable of giving more complete answers to questions 1) - 6). However, none
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of them has yet received a definitive answer. In particular, finding 5-reformed
decks at Mousetrap brings to conjecture that, for increasing values of m, it
is possible to find k-reformed decks for every value of k (question 4)). As
already observed, the answer strongly depends on the competition between
the growth rate of the number of total reformed decks and the decrease rate
of Pmax, when m grows. It could be very useful to study the game for increasing
values of m, by means not only of Monte Carlo simulations, but mainly of the
backward technique implemented in a parallel computing framework in order
to know the evolution, with m, not only of PM,m·1(m), but also of the different
probabilities P≥k to achieve decks which are at least k-reformable.

The improvement of the technique, mainly concerning the memory saving
problems, could lead to more satisfactory results.

For example, it is highly probable that the scores attained at Modular Mouse-
trap by the deck

6 2 5 11 1 8 13 12 7 9 10 3 4 ,

which is 51-times reformable, by the deck

1 16 11 14 9 8 4 2 5 15 13 6 12 3 10 7 17

which yielded a 39924-trajectory and by the 209-cycle

1 7 3 8 2 9 12 14 4 15 16 10 11 5 6 17 13

could be improved, if we would study more cases for s = 1, m prime and
m > 13.

In order to encourage further suggestions to improve the memory saving and
the algorithm we implemented, we inserted all the FORTRAN files used for
our researches in our web page

http://www.dmmm.uniroma1.it/ bersani/mousetrap.html

together with all the results for Modular Mousetrap. The page is still under
construction and the comments in the FORTRAN files are still written in
Italian. However, until their translation into English is ready, I am at the
disposal of everyone who would like to collaborate in this research in order to
explain the passages in the FORTRAN files.

Some other problems can be explored in the games analyzed in this paper. For
example, since Modular Mousetrap gives very long sequences of reformed decks,
it could be interesting to determine the number of Garden of Eden points, or
the in-degree of every cycle, in particular of the trivial one 1 2 3 ... n.
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