ANALISI MATEMATICA II

Laurea in Ingegneria Informatica Laurea in Ingegneria Automatica Laurea in Ingegneria delle Telecomunicazioni Laurea specialistica in Ingegneria Gestionale

Esame del 17 settembre 2009

Nome e Cognome	matr	icola
Firma		
	MOTIVARE TUTTE LE RISPOSTE	

E 1 Calcolare

$$\int_{\gamma} \sum_{n=-3}^{+\infty} (i(z-3))^n dz$$

dove γ é la circonferenza di centro il punto (3,0) e raggio 1/3.

Nome e Cognome .	matricola	2.2

 ${\bf E}$ 2 Individuare, usando il metodo della trasformata di Laplace, il valore del parametro reale $\alpha \neq 0$ per cui la soluzione di

$$\begin{cases} y'(t) - y(t) = e^{\alpha t} \\ y(0) = 1 \end{cases}$$

soddisfa y(1) = 2.

 ${\bf E}$ 3 Data la funzione, periodica di periodo $2\pi,$ definita in $[0,2\pi[$ da

$$f(t) = \begin{cases} \frac{1}{(e^t - 1)^{\alpha}} & t \neq 0\\ 1 & t = 0 \end{cases}$$

 $f(t) = \begin{cases} \frac{1}{(e^t-1)^\alpha} & t \neq 0\\ 1 & t=0 \end{cases},$ dire per quali valori di $\alpha>0$ converge la serie $\frac{a_0^2}{2} + \sum_{k=1}^{+\infty} (a_k^2 + b_k^2)$ dove a_k e b_k sono i coefficienti di Fourier di f(t)Fourier di f(t)

(suggerimento: non serve calcolare esplicitamente i coefficienti a_k e b_k , ma usare l'eguaglianza di Parseval, spiegando perché vale.)

_matricola _____

2.4

D 1

- (i) Definizione di aperto semplicemente connesso.
- (ii) Trovare un aperto semplicemente connesso in cui

$$f(z) = \frac{1}{e^z - 1}$$

ammetta primitiva .

Nome e Cognome	matricola	2.5
D 2		

- (i) Si enunci il teorema di integrazione termine a termine per serie di funzioni in campo reale.
- (ii) Si dimostri il teorema enunciato.