1 Compito 1 del 26 marzo 2007

E.1

L'integrale in questione, I , puó essere calcolato utilizzando il teorema dei residui e il lemma di Jordan. Si ha

$$I = \frac{1}{2i} \int_{-\infty}^{+\infty} \frac{e^{i(\omega+1)x}}{x^2+1} dx - \frac{1}{2i} \int_{-\infty}^{+\infty} \frac{e^{i(\omega-1)x}}{x^2+1} dx = \frac{\pi i}{2} (e^{-(\omega-1)} - e^{-(\omega+1)})$$

Infatti, limitandoci al secondo dei due integrali, si ha

$$\int_{-\infty}^{+\infty} \frac{e^{i(\omega-1)x}}{x^2+1} dx = \lim_{R \to +\infty} \int_{-R}^{+R} \frac{e^{i(\omega-1)x}}{x^2+1} dx = \lim_{R \to +\infty} \int_{-R}^{+R} \frac{e^{i(\omega-1)x}}{x^2+1} dx + \lim_{R \to +\infty} \int_{\gamma_R} \frac{e^{i(\omega-1)z}}{z^2+1} dz = \int_{\gamma} \frac{e^{i(\omega-1)z}}{z^2+1} dz = 2\pi i \operatorname{res}(\frac{e^{i(\omega-1)z}}{z^2+1}, i) = \pi e^{-(\omega-1)}$$

dove γ é la curva composta dalla semicirconferenza di centro l'origine e raggio R e dal segmento di estremi -R e R dell'asse reale. É possibile applicare il lemma di Jordan perché la funzione $\frac{1}{z^2+1}$ tende a zero per |z| che tende a $+\infty$ e $\omega-1>0$.

E.2

$$y(t) = (\alpha - 1)e^{-t} + 1$$
$$\alpha = 1$$

E.3

Posto |z|-1=t, la serie diventa una serie di potenze nel campo reale, con raggio di convergenza 1, che diverge per t=1 e converge per t=-1 (é di Leibnitz). Dunque, per la serie iniziale, si ha convergenza puntuale nella cerchio aperto |z|<2 e totale nelle corone chiuse $1-a\leq |z|\leq 1+a$ con 0< a<1 arbitrario.

D.1

(ii) In $x = 3\pi/2$ la somma vale $\pi^2/4$. In $x = 2\pi$ la somma vale $\pi^2/2$.

D.2

z=0 é l'unico punto singolare, singolaritá essenziale, con residuo π . Dal teorema dei residui, l'integrale vale $2\pi^2i$.

2 Compito 2 del 26 marzo 2007

E.1

L'integrale in questione, I , puó essere calcolato utilizzando il teorema dei residui e il lemma di Jordan. Si ha

$$I = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{e^{i(\omega+1)x}}{x^2 + 1} dx + \frac{1}{2} \int_{-\infty}^{+\infty} \frac{e^{i(\omega-1)x}}{x^2 + 1} dx = \frac{\pi}{2} (e^{-(\omega+1)} + e^{-(\omega-1)})$$

Infatti, limitandoci al primo dei due integrali, si ha

$$\int_{-\infty}^{+\infty} \frac{e^{i(\omega+1)x}}{x^2+1} dx = \lim_{R \to +\infty} \int_{-R}^{+R} \frac{e^{i(\omega+1)x}}{x^2+1} dx = \lim_{R \to +\infty} \int_{-R}^{+R} \frac{e^{i(\omega+1)x}}{x^2+1} dx + \lim_{R \to +\infty} \int_{\gamma_R} \frac{e^{i(\omega+1)z}}{z^2+1} dz =$$

$$= \int_{\gamma} \frac{e^{i(\omega+1)z}}{z^2+1} dz = 2\pi i \operatorname{res}(\frac{e^{i(\omega+1)z}}{z^2+1}, i) = \pi e^{-(\omega+1)}$$

dove γ é la curva composta dalla semicirconferenza di centro l'origine e raggio R e dal segmento di estremi -R e R dell'asse reale. É possibile applicare il lemma di Jordan perché la funzione $\frac{1}{z^2+1}$ tende a zero per |z| che tende a $+\infty$ e $\omega+1>0$.

E.2

$$y(t) = (\beta + 3)e^t - 3$$
$$\beta = -3$$

E.3

Posto |z|-2=t, la serie diventa una serie di potenze nel campo reale, con raggio di convergenza 1, che diverge per t=1 e converge per t=-1 (é di Leibnitz). Dunque, per la serie iniziale, si ha convergenza puntuale nella corona circolare $1 \le |z| < 3$ e totale nelle corone chiuse $2-a \le |z| \le 2+a$ con 0 < a < 1 arbitrario.

D.1

(ii) In x = 4 la somma vale 2. In x = 4.5 la somma vale 1.5.

D.2

z=0 é l'unico punto singolare, singolaritá essenziale, con residuo 2. Dal teorema dei residui, l'integrale vale $4\pi i$.