
On some applications of a class of

totally positive bases

Laura Gori and Francesca Pitolli

Dip. Me.Mo.Mat. - Università di Roma ”La Sapienza”
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1 Introduction

It is well known that total positivity plays an important role in many fields,
from the design of curve to approximation theory [3, 9, 17]. In recent years
there have been many papers on the shape preserving properties of totally
positive (TP) bases, in particular for the spaces of polynomials, or for the
spaces of polynomial spline functions. We recall that a system of functions
is called totally positive if its collocation matrices are TP, i.e., all its minors
are non-negative. On the other hand, refinable functions are essential in the
construction both of stationary subdivision schemes (and thus in CAGD)
[5, 8] and of wavelet bases, whose applications to several approximation
problems has proved to be very profitable. In particular, recently, problems
involving partial differential or integral equations was successfully dealt with
by means of wavelets, as a number of paper shows [1, 6, 7, 16, 19].

Thus, it is apparent the importance which, in many contexts, the use of
totally positive systems of refinable functions may assume. The introduction
of a large class of these systems is due to Goodman and Micchelli [11], who,
among other things, proved that the system of functions constituted by the
integer translates of a refinable function, associated with a left-half plane
stable symbol, is totally positive. In the following we shall denote by LHP
the set of such refinable functions.

The aim of this paper is to present some applications of a class of totally
positive systems of refinable function belonging to LHP, which was intro-
duced in [13, 15] and which are explicitly identified by their regularity and
symmetry.

The paper is organized as follows; in Section 2, the basic properties of the
just quoted refinable functions are reviewed; Section 3 concerns construction
and properties of B-basis [2, 4] on a given finite interval, starting from a
finite set of integer translates of the same refinable function. In Section 4,
we introduce two positive approximation operators in terms of the obtained
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B-basis and discuss a few of their properties. In particular, we are interested
in analyzing how the use of these functions influences the behavior of certain
linear operators of Schoenberg-Bernstein type, which turn out to be shape
preserving when they are based on suitable bases of polynomials or spline
functions [10].

2 Preliminaries

The most typical example of refinable functions belonging to LHP is pro-
vided by the cardinal B-spline Mn, of degree n, convolution of n + 1 times
the characteristic function χ of the interval [0, 1]

Mn = χ ∗ χ ∗ . . . ∗ χ; (2.1)

it satisfies the general refinement equation

ϕ(x) =
∑

k∈ZZ

akϕ(2x − k), (2.2)

when the mask {ak}k∈ZZ is given by











ak =
1

2n

(

n + 1

k

)

, k = 0, 1, . . . , n + 1,

ak = 0, otherwise.

(2.3)

Its symbol (or discrete Fourier transform), given by

b(z) =
1

2n
(1 + z)n+1 (2.4)

with z = eiθ, is clearly left-hand plane stable. Moreover, Mn belongs to
Cn−1(IR), is supported on [0, n+1] and is symmetric with respect to (n+1)/2.

In [13] another set of refinable functions, which share many properties
with the cardinal B-splines, have been introduced. Their masks are explicitly
identified by the conditions on ϕ to be centrally symmetric and to belong
to LHP and Cn−2(IR).

It is a one-parameter family of refinable functions satisfying (2.2) for











ak =
1

2h

[(

n + 1

k

)

+ 4(2h−n − 1)

(

n − 1

k − 1

)]

, k = 0, 1, . . . , n + 1,

ak = 0, otherwise,
(2.5)

whose symbol is given by

pn(z) =
1

2h
(1 + z)n−1(z2 + (2h−n+2 − 2)z + 1). (2.6)
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Here, h ≥ n ≥ 2 is a real parameter.
These refinable functions, to be denoted by ϕn,1,h, can be considered as

a generalization of Mn; in fact, their masks, which are a linear combination
of the masks of the cardinal B-spline of degree n and n − 2, reduce to the
mask of Mn when h = n. For any n, and h ≥ n, the functions ϕn,1,h belong
to Cn−2(IR), are compactly supported on [0, n + 1] and central symmetric;
moreover, the functions {ϕn,1,h(x − j)}j∈ZZ are linearly independent and
provide a totally positive system on IR.

In Fig. 1 the graph of ϕ3,1,h for different values of h are displayed,
confirming that, when h diverges, ϕn,1,h tends to Mn−2 (cf. (2.5)).
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Fig. 1. The refinable functions ϕ3,1,h for h = 3, 4, 6, 8.

A further generalization was given in [15] where new families of refinable
functions ϕ belonging to LHP are identified in terms of their masks, imposing
the conditions ϕ ∈ Cn−2m(IR), supp ϕ = [0, n + 1], 1 ≤ m ≤ [n/2], beyond
central symmetry. These masks are, again, a linear combination of the masks
of the cardinal B-splines of degree n, n − 2, . . . , n − 2m, and are expressed
by











ak =
∑m

r=0 b
(r)
r

(

n + 1 − 2r

k − r

)

, k = 0, . . . , n + 1,

ak = 0, otherwise,

(2.7)

where the coefficients b
(r)
l are defined recursively as follows:

b
(r)
l = b

(r−1)
l −

(

2m − 2r + 2

l − r + 1

)

b
(r−1)
r−1 , r = 0, 1, . . . ,m−1, l = r+1, . . . ,m,

(2.8)

and b
(0)
l , l = 0, 1, . . . , 2m, are positive numbers such that















b
(0)
2m−r = b

(0)
r , r = 0, 1, . . . , 2m

b
(0)
m = 22m−n − 2

∑m−1
j=0 b

(0)
j ,

det (b
(0)
2j−i; i, j = 1, . . . , p) > 0, p = 1, . . . , 2m.

(2.9)
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(We assume
(l
i

)

= 0 for i = 0 or i > l.)
Their symbol is given by

p(z) = (z + 1)n−2m+1q2m(z), (2.10)

where

q2m(z) =
2m
∑

k=0

b
(0)
k zk, q2m(1) = 2−n+2m. (2.11)

We explicitly observe that relations (2.9) depend on the conditions on ϕ
to be central symmetric and to have a left-half plane stable symbol.

For any fixed m, there are m real parameters, namely, b
(0)
j , j = 0, 1, . . .,

m−1, satisfying (2.9). For computational purpose, it is convenient to express
them by means of dyadic fractions. For m = 2 we assume

b
(0)
0 = 2−h1, b

(0)
1 = 2h2−h1, (2.12)

where the parameter vector H = [h1, h2] satisfies the condition h1 > n−2+
log2(1 + 2h2−1) in order to fulfill (2.9). Correspondingly, (2.7) gives































ak =
1

2h1

[(

n + 1

k

)

+ (2h2 − 4)

(

n − 1

k − 1

)

+

+ (2−n+4+h1 − 2h2+2)

(

n − 3

k − 2

)]

, k = 0, 1, . . . , n + 1,

ak = 0, otherwise.
(2.13)

For h1 = n and h2 = 2, we get the mask of Mn.
In the following we shall denote by H = [h1, h2, . . . , hm] the vector of

the real parameters, by ϕn,m,H the corresponding refinable functions and by
Ψ the set of all functions ϕn,m,H for any admissible n,m,H:

Ψ = {ϕn,m,H(x), supp ϕ = [0, n + 1] }. (2.14)

In Fig. 2 some graphs of ϕ6,2,H for a few values of n and H are displayed.
We conclude listing some properties of the refinable functions ϕn,m,H and

of their masks, which will be useful in the sequel. For the sake of simplicity
we suppress the subscripts. There results

∑

j∈ZZ

ϕ(x − j) = 1, x ∈ IR . (2.15)

The functions of the system {ϕ(x− j), j ∈ ZZ} are linearly independent and
there results

det
l,j=1,...,r

ϕ(xl − ij) ≥ 0, (2.16)
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for all x1 < x2 < . . . < xr, i1 < i2 < . . . < ir, xl ∈ IR, il ∈ ZZ, with the strict
inequality holding if and only if il < xl < il + n, l = 1, . . . , r,

∫

IR
ϕ(x)dx = 1; (2.17)

and
∑

k∈ZZ

ak+2j = 1, ak = an+1−k. (2.18)
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Fig. 2. The refinable function ϕ6,2,H for h1 = 6, 7, 8, 9, 15 and h2 = 3.

3 B-bases of refinable functions

The properties quoted in Section 2, allow us for concluding that considering
any finite interval I = [α, β], α and β integers, the linearly independent
functions of the system

Φn,m,H = {ϕn,m,H(x − j), N1 ≤ j ≤ N2}, (3.1)

where N1 = α − n and N2 = β − 1, form a normalized (or blending) totally
positive (NTP) basis for the space S they span.

As a consequence, the system Φn,m,H can be used in order to define a
curve which reproduces the shape of a polygonal arc Γ = AN1

AN1+1 . . . AN2

in IR2, where Ai = (xi, yi), i = N1, N1 + 1, . . . , N2, are given points. In fact,
consider the curve

r(t) = (r1(t), r2(t)) =
N2
∑

i=N1

Aiϕn,m,H(x − i), x ∈ I; (3.2)

then, the following proposition holds, as a particular case of some results in
[10].

Proposition 3.1 The curve r crosses any straight line L the same number

of times the polygonal arc Γ crosses L; if Γ is convex, such is the curve r.
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Thus, the bases Φn,m,H , for any compatible n,m,H, have shape preserv-
ing properties, as in the case of polynomial bases and spline function bases
discussed in [3, 10].

At this point, it is worthwhile to recall that for the space IPn of poly-
nomials of degree less or equal to n, the Bernstein basis has optimal shape
preserving properties among all NTP bases of IPn on a compact interval, as
well as it happens for the B-spline bases in the spaces of polynomial spline
functions. Now, in [4] both these bases have been inserted in the more gen-
eral framework of the B-bases, of which they are particular cases. We recall
that a TP system of linearly independent functions u defined on I ⊆ IR is
said to be a B-basis if all TP bases v of the space generated by u satisfy the
relation

vT = uT A, (3.3)

where A is a nonsingular TP matrix.
In [4], normalized B-bases (or optimal bases) are characterized through

certain their properties and an algorithm for their construction is given.
This algorithm can be applied, in particular, when the NTP system under
consideration is constituted by suitable integer shifts of a refinable function.

Details on the construction of normalized B-bases starting from refinable
functions are given in [14]; in Fig. 3 and 4 we show some examples concerning
particular choices of ϕn,m,H .
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Fig. 3. The NTP basis Φ3,1,4 (dashed line) and the corresponding normalized
B-basis (solid line) in the interval [0, 4].
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Fig. 4. The NTP basis Φ5,2,6,2 (dashed line) and the corresponding normalized
B-basis (solid line) in the interval [0, 6].

It is worthwhile to note that when ϕn,m,H reduces to Mn, the normalized
B-basis obtained from {Mn(x−j)}N2

j=N1
is exactly the cardinal B-spline basis

as defined in [21].

4 Some applications

Let us consider again the system {ϕn,m,H(x − j), j ∈ ZZ}. The spaces
Vj spanned by {2j/2ϕn,m,H(2jx − k)}k∈ZZ give a multiresolution analysis in
L2(IR) and V0 ⊇ IPn−2m [15]. Based on this property, the following results
are interesting for later use.

Proposition 4.1 Let ϕ be any function in Ψ, n ≥ 2m − 1; then, there

results

x =
∑

j∈ZZ

(

j +
n + 1

2

)

ϕ(x − j), x ∈ IR . (4.1)

Proof. Let us denote by µk the k-th moment of ϕ:

µk =

∫

IR
xkϕ(x)dx.

From [18, Lemma 5.2] it follows

x =
∑

j∈ZZ

(j + µ1)ϕ(x − j), x ∈ IR,

while from [7, Sect. 4], one gets

µ1 =
µ0

2

n+1
∑

k=0

kak.
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The properties (2.17) and (2.18) give µ0 = 1,
∑n+1

k=0 ak = 2, ak = an+1−k;
therefore, in the case when n = 2r, one can write

n+1
∑

k=0

kak =
r
∑

k=0

(2r + 1)ak = 2r + 1 = n + 1,

while for n = 2r + 1, one has

∑n+1
k=0 kak =

∑r
k=0(2r + 2)ak + (r + 1)ar+1 =

= (r + 1) (2
∑r

k=0 ak + ar+1) = 2r + 2 = n + 1,

then (4.1) follows.

The proposition above implies the existence, for any finite NTP system
Φn,m,H given by (3.1), of N := N2 − N1 + 1 numbers ξj, j = N1, . . . , N2,
such that

x =
N2
∑

j=N1

ξjϕn,m,H(x − j). (4.2)

We note that not all ξj belong to I. However, if we consider the B-basis
associated with a given Φn,m,H , then relation (4.2) holds for numbers ηj ∈ I,
j = N1, N1 + 1, . . . , N2, as the theorem below states.

Theorem 4.2 Let Wn,m,H = {wj,n,m,H}N2

j=N1
be the B-basis generated by

the NTP system Φn,m,H on the interval I. Then, there exist N numbers

ηN1
, . . . , ηN2

∈ I such that

x =
N2
∑

j=N1

ηjwj,n,m,H(x), x ∈ I. (4.3)

Proof. By the notation X = [ξN1
, . . . , ξN2

]T , (4.2) can be written as

x = ΦT
n,m,HX,

which, by the change of basis ΦT
n,m,H = W T

n,m,HA (cf. (3.3)), yields

x = W T
n,m,HAX = W T

n,m,HY =
N2
∑

j=N1

ηjwj,n,m,H(x),

where Y = AX := [ηN1
, . . . , ηN2

]T . The sequence {ξj}
N2

j=N1
is clearly increas-

ing, then such is the sequence {ηj}
N2

j=N1
, seen the properties of A; moreover,

one has

a =
N2
∑

j=N1

ηjwj,n,m,H(a) = ηN1
, b =

N2
∑

j=N1

ηjwj,n,m,H(b) = ηN2
,
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since, by construction, wj,n,m,H(a) = δj,N1
, wj,n,m,H(b) = δj,N2

.

Consider now the B-basis Wn,m,H of the space S spanned by {ϕn,m,H(x−
j)} on I; for any real valued function f on I, the following operator analogous
to the Bernstein-Schoenberg operator [20] can be defined:

S1f(x) =
N2
∑

j=N1

f(ηj)wj,n,m,H(x). (4.4)

S1 is clearly a linear positive operator for which the following theorem holds,
where S−(f) denotes the number of strict sign changes of f on I, that is
S−(f) = sup S−(f(x0), . . . , f(xr)), where the supremum is taken over all
increasing sequences (x0, . . . , xr) in I, for all r.

Theorem 4.3 The operator S1 reproduces any linear function, satisfies the

end-point interpolation property

S1f(α) = f(α), S1f(β) = f(β) (4.5)

for any function f on I. Moreover, for any linear function l and any function

f on I, there results

S−(S1f − l) ≤ S−(f − l). (4.6)

Proof. Theorem 4.2 assures the existence of a sequence {ηj}
N2

j=N1
, such that

α = ηN1
≤ ηN1+1 ≤ . . . ≤ ηN2

= β

for which (4.3) holds; then, (4.5) and (4.6) follow from some results in [10].

In Fig. 5 we display the graphs of S1f and f for a particular choice of
ϕn,m,H and f . The points f(ηj) are represented by the symbol ∗.
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Fig. 5. The operator S1f(x) relative to ϕ6,4,7,3 (solid line) and the function

f(x) = 1 − (2x/7 − 1)2 in the interval [0, 7].
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It has already been remarked that any system Φn,m,H on a given interval
I, can be considered as a generalization of the basis {Mn(x−j)}N2

j=N1
, and the

B-basis Wn,m,H corresponding to ϕn,m,H as a generalization of the cardinal
B-spline basis. Therefore, it is rather natural to consider another linear
positive operator in terms of the system Wn,m,H , namely

S2f(x) =
N2
∑

j=N1

(

∫ β

α
bj,n−2f

)

wj,n,m,H , x ∈ I, (4.7)

where bj,n−2 is the j-th element of the B-basis corresponding to Φn−2,m,K,
K = [h1 − 2, h2, . . . , hm], normalized so to have unit integral. We adopt the
convention

∫ β

α
bN1,n−2f = f(α),

∫ β

α
bN2,n−2f = f(β). (4.8)

In the case when Wn,m,H reduces to the B-spline basis, S2f is the positive
operator introduced in [12]. In the more general case a number of numerical
experiments shows that the following relatin holds

∫ β

α
bj,n−2(t)tdt = ηj , (4.9)

where ηj are the numbers in (4.3). The (4.3) and (4.9) justify the following
conjecture.

Conjecture. The linear positive operator S2 reproduces any linear func-
tion, satisfies the end-point interpolation conditions

S2(f)f(α) = f(α), S2f(β) = f(β)

for any f on I; moreover S−(S2f − l) ≤ S−(f − l) for any linear function l.
In Fig. 6 the graphs of S2f confirms our conjecture for a particular

choice of ϕn,m,H .
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Fig. 6. The operator S2f(x) relative to ϕ6,4,7,3 (solid line) for the functions

f(x) = 1 − (2x/7 − 1)2 (solid line) (a) and f(x) = x/7 (b) in the interval [0, 7].
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