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Totally Positive Functions through
Nonstationary Subdivision Schemes

Costanza Conti*, Laura Goril, Francesca Pitollif

Abstract

In this paper a new class of nonstationary subdivision schemes is
proposed to construct functions having all the main properties of B-
splines, namely compact support, central symmetry and total positiv-
ity. We show that the constructed nonstationary subdivision schemes
are asympotically equivalent to the stationary subdivision scheme as-
sociated with a B-spline of suitable degree, but the resulting limit
function has smaller support than the B-spline although keeping its
regularity.
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1 Introduction

The power of subdivision schemes has been extensively established in several
contexts, like, just to mention two well known examples, the design of smooth
curves and surfaces and the generation of refinable functions and wavelets.
Subdivision schemes basically are iterative schemes based on simple refine-
ment rules generating denser and denser sequence of points convergent to
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a continuous curve or surface. A celebrated example is given by B-spline
stationary subdivision schemes that can be used to generate spline curves.

An important review of the different subdivision schemes, which range
from stationary (i.e. the refinement rules do not depend on the recursion
level) to nonstationary, from uniform (i.e. the refinement rules do not vary
from point to point) to nonuniform, from binary (i.e. the number of points
is 'doubled’ at each iteration) to any a-rity, can be found in [3].

In the variety of subdivision algorithms investigated nowadays, our inter-
est is in the direction of nonstationary schemes whose importance is shown,
just to give an example, in the construction of the up-function. Actually,
the up-function having support [0, 2] and regularity C* is the limit of a non-
stationary subdivision scheme based on stationary B-spline masks (see, for
example, [1]).

The goal of this paper is to use nonstationary subdivision schemes for
constructing symmetric and totally positive functions having the same sup-
port but higher smoothness than B-splines. In particular, we are going to
construct totally positive symmetric functions with support of length n and
smoothness O™,

The rest of the paper is organized as follows. In Section 2 we list all the
basic facts about nonstationary subdivision schemes needed in the paper. In
Section 3 we introduce the new class of totally positive functions generated
via nonstationary subdivision schemes and we discuss some of their proper-
ties. Finally, in Section 4, some graphs of the constructed functions together
with the curves generated by the corresponding nonstationary subdivision
schemes are displayed.

2 Preliminaries

Any nonstationary subdivision scheme can be represented by an infinite se-
quence of refinement masks {a*};>0, & € N*. We assume that any sequence
a® = {af},cz is of real numbers and have finite support for all £ > 0. The
k-level subdivision operator associated with the k-level mask a” is

Sor ¢ U(Z) = U(Z)
(2.1)

(Sak Na =Y al 555, a €L,
BEZ



where A = {\,}aecz € U(Z), the linear space of real sequences indexed by Z.
The nonstationary subdivision scheme consists of the subsequent application
of Sgo, -+, Sar generating the scalar sequences

A=, A= G8 AF for k> 0. (2.2)

If {a* = a},>o the scheme is termed stationary.

Obviously, the process could also be started from any fixed level m, that
is by subsequent application of Sgm, -+, Sgm+r for £ >0, m > 0.

In order to investigate the subdivision properties, it is convenient to con-
sider the Laurent polynomials associated to the refinement masks a*, i.e.

ak(z) = Z ak 2. (2.3)

a€Z

A subdivision scheme is L.,-convergent if, for any A in ¢*°(Z), the linear
space of bounded scalar sequences indexed by Z, there exists a continuous
vector-valued function fy (depending on the starting sequence A) satisfying

Jim [ () - ¥ =0 24)

and fy # 0 for at least some initial data X. Here, the symbol fy (5r)

abbreviates the scalar sequence {fy (&) }an and || - |l 1= SUPaez | Aal-

Two nonstationary subdivision schemes with masks {a*};>o and {b"}0
are said to be asymptotically equivalent, in symbols {a*};o ~ {b*} 40, if for
some fixed L € Z it results

o

Z la**t — b* || < o0, (2.5)

k=max{0,—L}

where [la — bl = maxacs Xy lak 55— B 5l

This concept allows one to derive convergence properties of a given non-
stationary subdivision scheme from those of an asymptotic equivalent sub-
division scheme known to be convergent. To this respect, some results in [3]
can be concisely stated as follow.

Theorem A. Let {a*};50 ~ {b" := b} be two asymptotically equivalent
subdivision schemes with the latter being a stationary subdivision. If the
stationary subdivision {b} is convergent, then {a*};>¢ is convergent as well.
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With the help of Laurent polynomial representation in [9] D. Levin gave
sufficient conditions for convergence and smoothness investigation of non-
stationary univariate subdivision schemes. These conditions are based on
contractivity of the /-iterate of the subdivision operator. For completeness,
we shortly recall its result.

Theorem B. Let {a*(z)}x>0 the Laurent polynomials associated with the
masks {a*}so. Let {b""(2), 1 < r < N + 1} be the Laurent polynomials
recursively defined as

27"+1bk,'r(z)
phrtt =7 <r<N. 2.
() =" 0<r< (2:6)
where

V0 (2) = a¥(2) . (2.7)

If the scheme having Laurent polynomials {b""N 71 (2)} k>0 is convergent, the
scheme with masks {a*}r>o is CV.

For any convergent nonstationary subdivision scheme with masks {ak}kz(],

one gets a family of basic limit functions each defined by

Qsm = kllm Sam+ksam+k71 e Sa’m 60, m 2 0, (28)
— 00

where d; is the delta-sequence, i.e. §g = {0a,0}acz. The functions ¢,,, m > 0,
are solutions to the functional equations

Sm(z) = aldm(2x—a), zER, m>0, (2.9)

Q€L

which, following [3, 4], we denote by nonstationary refinement equations. In
the stationary case the equations (2.9) reduce to the refinement equation

() = Zaa¢(2x —a), zeR. (2.10)

Q€L

The nonstationary refinement equations (2.9) are related to the nonstationary
cascade algorithm defined as follows [4].
Choose a starting sequence of continuous functions {hy, o }m>o in L*(R) such



1
that, for any m, supp hn,o € K C R with U 5([( + a) C K. Further-
a€supp a¥

more, assume that there exists a function hg in L?(R) such that
hmo — %0, as m — oo, and /f;m%,g (%) — 1, as k — o0, (2.11)

uniformly in m and locally uniformly in u; these conditions are easily satisfied
if the functions h,, ¢ are independent of m and hy,((0) =1 for any m > 0.

The nonstationary cascade algorithm associated with the masks {a*};>¢
generates the sequences of functions {f,, }m>0, £ > 0, by the following
equations

B i () = Za;" hmi1k—1(2x —a), z€R, m>0, k>0. (2.12)
aEZ

The link with the nonstationary subdivision scheme with masks {a*} 5>, m >
0, is expressed by the relations

hin i (x) = ng"’k hm+k’g(2k$ —a), z€R, m>0, k>0, (2.13)

a€Z

where the sequences s™* = {s™*} ;. m >0, k> 0, are defined as

m.k .

™K = S ik 1+ Sm 8. (2.14)

Assuming {a*};>¢ & a, where a is the mask associated with a stationary
subdivision scheme, and {h, o}m>0 a stable sequence, in [4] it is shown that

Om = lim Sgmik -+ Sqm 6y & klim Whmgk — Pmllo =0, m>0. (2.15)
—0oQ

k—oo

3 A new class of functions generated via non-
stationary schemes

We start from the family of GP stationary subdivision algorithms, namely
subdivision schemes to be used to construct the so called GP functions,
introduced by the two last authors in [6]. The class of GP functions is made
of compactly supported, centrally symmetric and totally positive refinable
functions with prescribed smoothness.
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We recall that a function F' is said to be totally positive [7] if there results

det F(z;—a;) >0 (3.1)
l’j:17""p
for all z; < ... < 7z, and integers oy < ... < a,, p > 1. The importance

of totally positive functions in CAGD applications is related to the variation
diminishing [7] property they enjoy; as a consequence, any curve C(t) =
> wez Pa F(t—a), constructed on a sequence of control points { P, € R?} ez,
has shape preserving properties.

A stationary GP subdivision algorithm is given by the compactly sup-
ported subdivision masks a™" = {a{"™}74] defined as

1 J—
a(an,h):2_h [(n;—l ) +4(2h_"—1)<2_1 )} , a=0,...,n+1,

(3.2)
where h > n > 2 is a real parameter. Here, and in the rest of the paper,
(") =0fora<0ora>n.

The corresponding symbol, namely a™"(z) := Y aez a&n’h)za, is
n 1 n— —n
a™M(z) = i+ 1) 24202 — 1)z 4 1), (3.3)

Due to the factor 2,%1(2’ + 1)"1, the stationary subdivision scheme associ-
ated with any mask a(™" generates C" 2 functions. It also follows that the
refinable function (") generated when starting the subdivision process with
the delta-sequence, is compactly supported, totally positive with smoothness
C™ 2. Moreover, whenever n = h, (™" reduces to the B-splines of degree n
since a(™" (z) reduces to 5-(z+1)"*!. Another important special case is the
limit case we get when A goes to infinity. In fact, the limit symbol is

1
a™®)(z) = lim —(z+1)" (22 + 22" " — 1)z 4+ 1)
h—oo 20 (3 4)

= 271%2(2 + 1)n_lz,

which is the symbol of the shifted version of the subdivision mask associated
with a B-spline of degree n — 2. As a consequence, as the parameter h varies
from n to oo, GP functions describe a class of C"~2 functions which, although
are not splines, range from n-degree B-splines to n — 2-degree B-splines.



To give an idea of the behaviour of the GP functions, in Fig. 1 the graphs
of ¢BM for h = 3,4,8 are shown. The pictures are obtained by performing
five steps of the subdivision algorithm associated with the masks

a®¥ = 5{1,4,6,4,1}, a®Y = 1{1,8,14,8,1},

aB®® = L{1,128,254,128,1}.
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Fig. 1. Graphs of ) (cubic B-spline) (—), ¢34 (—=) and ¢3%)(-—).

In order to improve the smoothness of the GP functions we here propose to
use a nonstationary subdivision scheme to generate a new family of functions.
Practically, we set the additional free parameter A in the mask a™") to have
the special form h := n + k%, i > 1, and we construct an infinite sequence
of refinement masks. It means that, for any fixed n, we consider the set of

masks a* = {ak}"1{, defined for k = 0 as

1 _
agzw<2_1>, a:1,...,n, (35)

and for £ > 0 as

1 1 —
af = 1[<”+1>+4(2k—1)<” 1)} a=0,...,n+1.
2”+k7 (6] a—1
(3.6)




Consequently, the set of symbols we deal with is

a(2) = == (z +1)" 1z, for k =0,
(3.7)

akb(2) = —L(z+1)" 12+ 2020t — 1)z 4+ 1), fork>0.

1
ot

Taking into consideration that the limit mask a® := lim;_,, a* corresponds
to the one of the n-degree B-spline of support [0, n+1], we expect to generate
limit functions having shape given by the starting mask and smoothness by
the limit one, that is C™ . This result is better formulated in Theorem 3.2
and Theorem 3.3 below where, in order to obtain the smallest support for
the basic limit function ¢y, we will choose as starting mask a®, i.e. the one
associated with the n — 2-degree B-spline of support [1,n].

Before proceeding we need an auxiliary result.

o.¢]
Proposition 3.1. For u > 1 the series Z(l - 2’1%“) is convergent.
k=1

Proof For 2 > 0 consider the real function f(z) =1 — 27 which is positive,
concave and monotone increasing. By the concavity we have 0 < f(z) <
£(0) 4 f'(0) - z. Equivalently, 0 < 1— 277 < 2log(2). Form above we get

[e'e) L [e'e) 1
0<> (1—27w) glog(2)zk7,
k=1 k=1

thus concluding the proof. O

Theorem 3.2. For any p > 1, the nonstationary subdivision scheme (3.5)
and (3.6) generates C™™" functions.

Proof We start by considering the convergence of the scheme we generate
with the masks having symbols

V(2) =22, (3.8)
and )
W(2) = —— (2 4+ 2020 — 1)z +1), k>0. (3.9)
21+k_ﬂ
Since b (2) = limj_ o b*(2) = 1(z + 1), we are going to show that the

nonstationary subdivision scheme associated with the masks (3.8) and (3.9) is
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asymptotically equivalent to the linear B-spline, which implies, by Theorems
A and B, that the scheme is convergent and the limit function is C°. In fact,
for k >0

()~ () = 5z 4 17 (1275,

hence, from Proposition 3.1, we get >°°° ||b¥ — || < 0o, which is the
asymptotic equivalence of the nonstationary subdivision scheme {bk }e>o and
the stationary subdivision scheme associated with linear B-spline. Since
ak(z) = (Z;ii)_nl_lbk(z), k > 0, Theorem B allows us to prove the smooth-
ness result. O

Theorem 3.3. Let ¢, := limy_ o0 Sgm+k « -+ Sam 8o, m > 0, be the basic limit
functions generated by the nonstationary subdivision scheme (3.5) and (3.6).
The functions ¢,,, m > 0, are centrally symmetric, compactly supported, and
totally positive.

Proof The proof adapts the idea discussed in [5] to the nonstationary case.
To each mask in (3.5)-(3.6) we associate the k-level linear operator T+ acting
on a continuous function F' as

Ty F(z):=Y atFQx—a), z€R, k>0, (3.10)

a€Z

For a given starting sequence {h,0}m>0, the repeated application of Ty
gives
hm,k:Tamo"'o a,mJFkh’m,(]a m207k>07

so that, by definition,
1 -1 = Tgm+1 0+ -0 Tymik Ayt 0, m >0, k>0.

If Ay, is independent of m, it follows hy, x = Tmhmi1 k-1 o1, explicitly,

hmi(x) = Zag’l hmi1k-1(22 — ), r € R, m>0, k>0. (3.11)

Q€L

Now, let us assume h,, o = By, m > 0, where B; is the B-spline of degree 1.
Since the starting sequence {hp, o} is stable and satisfies (2.11), the cascade
algorithm (3.11) is convergent.

Due to the central symmetry of each mask in the sequence {a*};> and
of By, from above we get central symmetry of h,, ;41 for each m > 0 and
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each k > 0 with respect to the point "T“ Thus, the same property holds for
the limit functions ¢, = limy_,oc i, too.

As regards to the support, we can use the results given in [3, pg. 6].
In fact, assuming [I(k),r(k)], £ > 0, are the supports of the k-level masks
associated with a nonstationary subdivision scheme, the support of the limit
basic function ¢, is proved to be included in

o.¢] o.¢]

[Lons B o= | Y27 M(k), Y 2m (k)

k=m k=m

In our case [(0) = 1 and r(0) = n while (k) = 0 and r(k) = n+ 1, for & > 0.
Thus, in case m = 0 the left endpoint is Ly = % while the right endpoint is

> n n+lw— 1
R g 27k71 k — 2*"5 — .

~——
1

for m > 0, L,, = 0 while the right endpoint is

o o
Ry=) 2% (k) =(n+1)2"" Y 27F=n+1.
k=m k=m
1
Fm—T

Finally, we prove that the functions ¢,,, m > 0, are totally positive. In fact,
from (3.11) and using the Cauchy-Binet formula we get

T1,... @
Hm,k+1 < (1/11 ap ) = detl,r:l,...,p hm,k+1(xl - ar) =
e, Qp
2001, ..., 2« 2zq,...,2x
— A b ) S H ) ) S
Zﬂ1<---<ﬁp " < 51:"':55 ) mELE < 517"'755 ) ’
where
Ap,y..., Oép L k
Ak < /61, sy ﬁp ) o Tvlgle:-c--ap Ur—ar (312)
with a; < -+ < o and ; < -+ < fB,. Since the symbol associated to

any mask a* is a left-half plane stable polynomial, for any p > 0 and for
any sequences {ay}, {fk}, the determinants in (3.12) are non negative [8].
Moreover, {h, o} are totally positive functions, then, by induction, any hy, x,
k>0, m > 0, is totally positive and so is any ¢,,, m > 0. O
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E
Qg

E
ay

E
Qg

E
as

0

1

1

0

0.125

0.875

0.875

0.125

0.2394008

0.7605992

0.7605992

0.2394008

0.2478698

0.7521302

0.7521302

0.2478698

0.2493240

0.7506760

0.7506760

0.2493240

0.2497229

0.7502771

0.7502771

0.2497229

0.2498663

0.7501337

0.7501337

0.2498663

0.2499278

0.7500722

0.7500722

0.2499278

0.2499577

0.7500423

0.7500423

0.2499577

OO UY x| W N O

0.2499736

0.7500264

0.7500264

0.2499736

—_
e}

0.2499827

0.7500173

0.7500173

0.2499827

Table 1. Coefficients of the nonstationary masks a*, k =0, ..., 10, for
n =2 and p = 4. The numerical values are rounded to the seventh digit.

4 Examples

This section is devoted to some examples showing the performances of the
constructed nonstationary subdivision schemes. We consider, in particular,
the case when n = 2, 3,4, corresponding to C', C? and C? limit functions,
respectively; moreover, we fix 4 = 4. By substituting these values in the
explicit expression of the masks (3.5) and (3.6), we obtain the numerical
values listed in Tables 1-3 for the first 11 values of k. For shortness the
values in the tables are rounded to the seventh digit although the coefficients
of the masks are explicit so that they can be evaluated with higher precision.
We remark that the implementation of the proposed nonstationary method
has the same cost of a stationary one once the table of the coefficients is
constructed.
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E E E E E
Qg ay Qg as ay

0 0.5 1 0.5 0
0.0625 0.5 0.875 0.5  0.0625
0.1197004 0.5 0.7605992 0.5 0.1197004
0.1239349 0.5 0.7521302 0.5 0.1239349
0.1246620 0.5 0.7506760 0.5 0.1246620
0.1248614 0.5 0.7502771 0.5 0.1248614
0.1249332 0.5 0.7501337 0.5 0.1249332
0.1249639 0.5 0.7500722 0.5 0.1249639
0.1249788 0.5 0.7500423 0.5 0.1249788
0.1249868 0.5 0.7500264 0.5 0.1249868
0.1249913 0.5 0.7500173 0.5 0.1249913

Table 2. Coefficients of the nonstationary masks a*, k =0, ..., 10, for
n =3 and p = 4. The numerical values are rounded to the seventh digit.

OO UY x| W N O

—_
e}

Fig. 2. Graphs of ¢g for n =2 (left) and n = 4 (right) when p = 4.

Next, the nonstationary subdivision algorithm corresponding to the masks
given above, are used to generate both the limit functions ¢ and the limit
curves relative to a particular control polygon.

We display in Fig. 2 the graphs of the limit function ¢ obtained for n = 2
and n = 4. Observe that for n = 2 ¢, is C' and has support [%, g], while for
n =4 ¢y is C* and has support [3, 2.

Just to give an idea of the behavior of the nonstationary subdivision
scheme, in Fig. 3 the graphs of the starting control polygon and of the poly-

gons obtained in the first 11 iterations are displayed for n = 4 and pu = 4.
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E E E E E E
Qg aq Qg as ay as

0 0.25 0.75 0.75 0.25 0

0.03125 0.28125 0.6875 0.6875 0.28125 0.03125

0.0598502  0.3098502 0.6302996 0.6302996 0.3098502 0.0598502

0.0619674 0.3119674 0.6260651 0.6260651 0.3119674 0.0619674

0.0623310 0.3123310 0.6253380 0.6253380 0.3123310 0.0623310

0.0624307 0.3124307 0.6251385 0.6251385 0.3124307 0.0624307

0.0624666 0.3124666 0.6250668 0.6250668 0.3124666 0.0624666

0.0624820 0.3124820 0.6250361 0.6250361 0.3124820 0.0624820

0.0624894 0.3124894 0.6250211 0.6250211 0.3124894 0.0624894

OO0~ U x| W N =D&

0.0624934 0.3124934 0.6250132 0.6250132 0.3124934 0.0624934

—_
e}

0.0624957 0.3124957 0.6250087 0.6250087 0.3124957 0.0624957

Table 3. Coefficients of the nonstationary masks a*, k=0, ...,10, for
n =4 and p = 4. The numerical values are rounded to the seventh digit.

Fig. 3. The behavior of the subdivision algorithm for the first 11 iterations.
The control points and the refined points of the first two iterations are marked
with circles.
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Fig. 4. The nonstationary curve Fig. 5. The nonstationary curve
forn =2 and p =4 (solid line) in forn =2 and p = 4 (solid line)
comparison with the nonstation- i comparison with the B-spline
ary up-function curve (dashed- curves for n = 2 (dashed-line)
line). and n = 3 (dash-dotted line).

Fig. 6. The nonstationary curve Fig. 7. The nonstationary curve
forn =3 and p = 4 (solid line) forn =4 and p = 4 (solid line)
i comparison with the B-spline i comparison with the B-spline
curves for n = 3 (dashed-line) curves for n = 4 (dashed-line)
and n =4 (dash-dotted line). and n =5 (dash-dotted line).

In Fig. 4 the limit curves obtained by the C! nonstationary subdivision
scheme with n = 2 and p = 4 is compared with the curve obtained by the
C* nonstationary scheme

1 (kE+1
e )
(0%
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which gives rise to the up-function when applied to the delta-sequence.

Finally, in Fig. 5-7 the graphs of the limit curves obtained after 11 iter-
ations of the nonstationary subdivision schemes for n = 2,3,4 and p = 4
are displayed (solid line). For each value of n, the limit curves obtained by
the stationary subdivision schemes corresponding to the B-spline of degree
n (dashed line) and n + 1 (dash-dotted line) are also displayed. We recall
that, while for a given n the limit function ¢, has support of length n and
smoothness n — 1, the B-spline of degree n has support of length n + 1 and
smoothness n — 1. The comparisons show that, for each value of n, the non-
stationary curve is nearer the control polygon than both the two B-spline
curves.

The examples above show that the proposed nonstationary schemes im-
prove the behavior of the starting GP functions and, in particular, of the
B-splines since, for a given n, they generate a limit function more regular
than the B-spline of the same support, and at the same time more local-
ized with respect to the B-spline having the same smoothness. Moreover,
when n = 2 the limit curve generated by the proposed nonstationary scheme,
which is C, is similar to that one generated by the nonstationary up-function
scheme, which is C'*°.

The results above encourage us to extend the our construction of subdivi-
sion schemes to the bivariate case. A family of stationary schemes depending
on free parameters has been introduced in [2] by means of directional con-
volution. The construction of nonstationary schemes based on a procedure
similar to the univarate one is at present under investigation.
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