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Abstract. EEG/MEG devices record external signals which are gener-
ated by the neuronal electric activity of the brain. The localization of
the neuronal sources requires the solution of the neuroelectromagnetic
inverse problem which is highly ill-posed and ill-conditioned.
We provide an iterative thresholding algorithm for recovering neuroelet-
ric current densities within the brain through combined EEG/MEG data.
We use a joint sparsity constraint to promote solutions localized in small
brain area, assuming that the vector components of the current densi-
ties possess the same sparse spatial pattern. At each iteration step, the
EEG/MEG forward problem is numerically solved by a Galerkin bound-
ary element method. Some numerical experiments on the localization of
current dipole sources are also given.
The numerical results show that joint sparsity constraints outperform
classical regularization methods based on quadratic constraints.

Keywords: Source reconstruction, Sparse representation, Thresholded
iteration, Galerkin boundary element method

1 Introduction

Functional neuroimaging aims at understanding human brain functionality through
the localization of the active regions of the brain, for instance, during specific
tasks or even during rest. Commonly used neuroimaging techniques, such as
single-photon emission computed tomography (SPECT) and positron-emission
tomography (PET), make use of invasive devices which expose the subject to
x rays and radioactive tracers, respectively. Moreover, these techniques, being
related to the chemical reactions that take place inside the brain, are not able
to follow rapid changes occurring in neuronal activity. For this reason, in neu-
roscience studies there is a great effort in developing imaging techniques with
higher temporal resolution.

In recent years, magnetoencephalography (MEG) has gained an important
role in the field of neuroscience research since it is completely noninvasive and
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has a high temporal resolution. MEG aims at identifying the active area of the
brain by localizing inner electric current sources through the measurements of
the tiny magnetic field generated externally of the head by neuronal electric
activity (see the review papers [10, 20] for details). MEG is not a proper imaging
technique since to recover the current distribution underlying the magnetic data
an inverse problem has to be solved. It is known that the solution of the magnetic
inverse problem is nonunique, since there exists silent sources which do not
produce any external magnetic field [22]. Moreover, the magnetometers are just
a few hundreds, while in the localization a high spatial resolution is required,
and the measurements are affected by high noise. Thus, the MEG localization
problem results in an highly ill-posed and ill-conditioned inverse problem and it
is mandatory to use suitable regularization methods for its numerical solution
[4, 13, 22].

Since neuronal sources are localized in small regions, the electric current
flowing in the brain can be assumed to have a sparse spatial representation,
i.e. it can be represented as a sum of weighted basic currents, encoded by the
position and the spatial scale, in which just few terms are relevant. To pro-
mote sparse solutions, regularization methods based on sparsity constraints look
promising [8, 11]. In particular, since the electric current density is a vector-
valued function, it makes sense to assume that all its three components have
the same sparse spatial structure and to promote the same sparsity pattern on
all of them. To this end, joint sparsity constraints to reconstruct multichannel
signals were considered in [15, 16] where an iterative thresholding algorithm to
recover sparse vector-valued functions is also given. Following the same strategy,
in [14] an iterative thresholding algorithm especially designed to solve the MEG
inverse problem was proposed. Several numerical tests [5, 25] have shown that
this algorithm outperforms classical regularization methods based on quadratic
constraints [4, 13] in localizing current dipole sources, which are usually used to
model neuroelectric currents.

In [14] just the magnetic inverse problem was considered. However, the neu-
ronal activity generating the external magnetic field is responsible for the elec-
tric potential differences on the scalp, too. Thus, a strategy to gain some further
information on neuroelectric current distributions inside the brain consists in
measuring also the electric potential differences by carrying out standard (nonin-
vasive) electroencephalografic (EEG) records during MEG measurements. More-
over, the electric and magnetic field are mutually orthogonal so that combined
EEG/MEG measurements allows to detect sources which would be silent w.r.t.
EEG or MEG alone. For instance, neuroelectric sources radially oriented w.r.t.
the skull surface are magnetically silent but can be detected by electric measure-
ments. On the other hand, current loops are electrically silent but produce an
external magnetic field. Thus, EEG and MEG data are complementary and best
results in recovering brain functionality are obtained by integrating information
from both techniques [2].

In this paper we present a numerical method to solve the neuroelectromag-
netic inverse problem, i.e. the reconstruction of a neuroelectric current distri-
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bution from combined EEG/MEG data, using a joint sparsity constraints as
a regularization technique. The neuroelectromagnetic field can be described by
the quasistatic Maxwell’s equations which give rise to a boundary integral equa-
tion for the electric potential and to the Ampère-Laplace law for the magnetic
field [18, 19]. The integral operator equations describing the EEG/MEG forward
problem will be carried out in Sec. 2. In Sec. 3 we will set the EEG/MEG in-
verse problem with a joint sparsity constraint and we will provide an iterative
thresholding algorithm for its numerical solution that generalizes to the com-
bined EEG/MEG inverse problem the algorithm developed in [14].
At each iteration step, we need to solve the EEG/MEG forward problem, i.e.
the evaluation of the electric potential difference and the magnetic field once
the neuroelectric current distribution in the brain is given. In neuroscience lit-
erature, the EEG forward problem is usually solved by a collocation boundary
element method (BEM) in which the electric current density is modeled as a
sum of current dipoles with given positions [2, 17]. Here, we will follow a differ-
ent approach: we will present a Galerkin boundary element method where we
do not limit ourselves to a specific form of the current density. In this way we
expect to be able to resolve not only dipole sources, but also electric current
densities with different pattern, for instance, current loop that in recent studies
are assumed to connect different brain regions. Details on the Galerkin BEM for
the solution of the EEG/MEG forward problem will be given in Sec. 4. Finally,
in Sec. 5 some numerical results on a simple test problem will be displayed and
some conclusion and perspectives will be given.

2 The EEG/MEG Forward Problem

The neuroelectromagnetic field, i.e. the electromagnetic field generated by neu-
ronal electric activity, can be describe by the Maxwell’s equations. Actually,
focusing on biological conductors some simplifying assumptions can be taken
into account. Firstly, the permeability of the tissues in the head (scalp, skull,
cerebrospinal fluid and brain) is the same as the permeability in the free space,
say µ0. Moreover, there are no electric charges in the conducting medium. Fi-
nally, due to the low frequencies of bioelectric phenomena, we may neglect the
time derivatives of the electric and the magnetic fields.

Thus, the quasistatic Maxwell’s equations in a tissue with electric permittiv-
ity ε0 and magnetic permeability µ0 read

∇ ·E = 0 , ∇ ·B = 0 , (1)

∇×E = 0 , ∇×B = µ0J , (2)

where E and B are the electric and magnetic field, respectively, and J is the elec-
tric current density inside the tissue. As usual, we may express the irrotational
electric field with a scalar potential, i.e.

E = −∇V . (3)
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The EEG/MEG forward problem is to evaluate the neuroelectric potential
V and the neuromagnetic field B once the electric current sources are given. It
results in solving (2)-(3) once J is given.

The current density J flowing in the brain has two components. The primary
current Jp, generated by neuronal activity, flows inside or in the vicinity of the
neurons. The volume current Jv(r) = σ(r)E(r) flows passively everywhere in the
medium that is assumed to have macroscopic conductivity σ(r). Thus,

J(r) = Jp(r) + σ(r)E(r) = Jp(r)− σ(r)∇V (r) . (4)

Following [18],[19] we model the head as a conductor consisting of homo-
geneous nested regions, each one having constant conductivity. Let Gi, i =
0, . . . ,m, be the regions and σi, i = 0, . . . ,m, be the constant conductivity
inside Gi. Let us denote by Si, i = 0, . . . ,m, the interfaces between Gi and Gi+1

with ni(r) being the unit vector perpendicular to ∂Gi in r and pointing at Gi+1.
We assume the regions are nested with G0 being the innermost region, i.e.

G0 ⊂ G1 ⊂ · · · ⊂ Gm ,

and the interfaces Si, i = 0, . . . ,m, are not intersecting. The primary current Jp

flows just inside G0.
From the Maxwell’s equations (see [20] for details) it follows that the electric

current density (4) and the external magnetic field are related by the Ampère-
Laplace law that reads

B(r) = B0(r)−
µ0

4π

m
∑

i=1

σi

∫

Gi\Gi−1

∇V (r′)×
r− r′

|r− r′|3
dr′ , (5)

where

B0(r) =
µ0

4π

∫

G0

Jp(r′)× (r− r′)

|r− r′|3
dr′ (6)

is the magnetic field produced by Jp in an infinite homogeneous medium. The
volume integrals in (5) can be transformed into surface integrals on the interfaces
[19] obtaining

B(r) = B0(r)−
µ0

4π

m
∑

i=0

(σi+1 − σi)

∫

Si

V (r′)
r− r′

|r− r′|3
× ni(r

′) dSi(r
′) , (7)

(in the sum we may assume σm+1 = 0).
It can be shown [20] that the electric potential V satisfies a surface integral

equation which involves V at the interfaces only:

(σl+1 + σl)

2
V (r) = σ0V0(r) +

1

4π

m
∑

i=1

(σi+1 − σi)

∫

Si

V (r′)
r− r′

|r− r′|3
· ni(r

′) dSi(r
′) ,

r ∈ Sl, l = 0, . . . ,m,
(8)
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where

V0(r) =
1

4πσ0

∫

G0

Jp(r′) · (r− r′)

|r− r′|3
dr′ (9)

is the electric potential produced by Jp in an infinite homogeneous medium [18].
Equations (6)-(9) can be solved analytically for a few simple current distribu-

tions and conductor geometry. For instance, an analytical solution of the forward
problem can be obtained when the sources are modeled as current dipoles in a
homogeneous conducting sphere [26]. More realistic head models require numer-
ical methods to solve the integral equation (8) and to evaluate (7). This will be
addressed in Sec. 4.

3 The EEG/MEG Inverse Problem

In order to gain information on brain functionality we need to reconstruct the
primary current density Jp from the measured data. This results in an inverse
problem, known as neuroelectromagnetic inverse problem, which is to estimate
the brain current sources underlying the measurements of the scalp electric po-
tential and the external magnetic field [10],[20].

Let qi, i = 1, . . . ,M , and pi, i = 1, . . . , N , be the magnetometer and elec-
trode sites, respectively. The sites qi, i = 1, . . . ,M , belong to a surface Σ
with dist(Σ,Gm) > 0, and each magnetometer measures the magnetic field Bi,
i = 1, . . . ,M , along the direction e(qi) (usually the normal to the magnetometer
coil). The sites pi, i = 1, . . . , N , belong to the surface Gm (the scalp), and each
electrode measures the potential difference Vi, i = 1, . . . , N , w.r.t. a reference
electrode.

Now, let Be(r,J
p) := B(r) · e(r) and V(r,Jp) := V (r) be the integral opera-

tors representing the solution of the forward problem (7)-(8). We note that both
Be(r,J

p) and V(r,Jp) are linearly related to Jp. Thus, the neuroelectromagnetic
inverse problem is to minimize the discrepancy

∆(Jp) =

M
∑

i=1

(

Bi − Be(qi,J
p)
)2

+

N
∑

i=1

(

Vi − V(pi,J
p)
)2

(10)

w.r.t. to the primary current distribution Jp.
We recall that a current distribution inside a conductor cannot be retrieved

uniquely from knowledge of the electromagnetic field outside (see, for instance,
[20, 22]). There are primary current distributions that are either magnetically,
or electrically silent, or both, i.e. there may exist neuronal currents that do not
produce any external magnetic field or electric potential differences on the head.
Thus, we must add some further constraints in order to confine ourselves to find
a solution among a limited class of source configurations [4],[13].

The regularization methods based on quadratic constraints lead to over smoothed
source estimations [8, 12]. In particular, minimum ℓ2-norm estimates, i.e. mini-
mizers of the functional

∆(Jp) + α ‖Jp‖22 , α > 0 , (11)
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are not appropriate for the localization of epileptic foci, which are known to
be confined in small brain regions. This allows us to assume that the primary
current has a sparse representation w.r.t. a suitable basis of compactly supported
functions (ψλ)λ∈Λ, i.e.

Jp = (J1, J2, J3) ∈ L2(G0;R
3) , Jℓ =

∑

λ∈Λ

jℓλ ψλ , ℓ = 1, 2, 3 , (12)

where only few coefficients (jℓλ) for each component are non-vanishing [11].
We note that multiscale basis are successfully used in medical signal pro-

cessing and image analysis since scale adaptivity allows to detect spikes and
discontinuities appearing in biological signals or inhomogeneous structures char-
acterizing biological tissues [1]. Thus, we may assume (ψλ)λ∈Λ be a multiscale
basis, i.e. a wavelet basis or a frame [23].

Since all the components Jℓ, ℓ = 1, 2, 3, are related to the same neurophys-
iological phenomenon, it makes sense to assume the subset of non-vanishing
coefficients being the same for all the three components. This is equivalent to
require that Jp has a sparse representation w.r.t. the joint ℓq-norm, defined as

‖(jλ)λ∈Λ‖q :=

(

∑

λ∈Λ

(

‖jλ‖R3

)q

)1/q

, q ≥ 1 , (13)

where jλ = (j1λ, j
2
λ, j

3
λ)
T [15].

Let j = (jλ)λ∈Λ. Following [15], it can be shown that the solution of the
EEG/MEG inverse problem with a joint sparsity constraint is the minimizer of
the functional

J
(q)
θ,ρ,ω(j, v) := ∆(j)+

(

∑

λ∈Λ

vλ ‖jλ‖q +
∑

λ∈Λ

ωλ ‖jλ‖
2
2 +

∑

λ∈Λ

θλ(ρλ − vλ)
2

)

, (14)

restricted to vλ ≥ 0. Here, (θλ)λ∈Λ, (ρλ)λ∈Λ, and (ωλ)λ∈Λ are some suitable
positive parameter sequences. The discrepancy∆(j) can be obtained by inserting
in (10) the current density representation (12) so that

∆(j) = ‖F − Tψ j‖22 , (15)

where F = [(Vi)i=1,...,N , (Bi)i=1,...,M ]T denotes the measurement vector, while
Tψ denotes the matrix whose entries are the coefficients of the operators V(r,Jp)
and Be(r,J

p) w.r.t. (jℓλ)(λ∈Λ)(ℓ=1,2,3) (see Sec. 4 for details).
The task is to minimize Jθ,ρ,ω(j, v) jointly with respect to both the variables

j and v. The first belongs to the space of signals (current densities) to be recon-
structed, the second belongs to the space of sparsity indicator weights (see [15,
16] for details).

The minimizer (j∗, v∗) of the functional J
(q)
θ,ρ,ω subject to the joint sparsity

constraints can be approximated by the following iterative algorithm, deduced
from [16] (see also [14]).
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Vector Iterative Thresholding Algorithm


































Let γ be a suitable relaxation parameter

Choose an arbitrary j(0) ∈ ℓ2(Λ; IR3)

For 0 ≤ k ≤ K do j(k+1) = S
(q)
θ,ρ,ω

(

j(k) + γ T ∗ψ(F − Tψ j(k))
)

(16)

The operator S
(q)
θ,ρ,ω : ℓ2(Λ; IR3)→ ℓ2(Λ; IR3) is the vector-valued threshold-

ing operator introduced in [15] and can be efficiently evaluated by the algorithm
given in [16].

The convergence of the algorithm above can be proved as in [14], nevertheless
we expect a slow convergence rate, as already put in evidence in some numerical
tests on the solution of a magnetic bidimensional inverse problem [25]. More effi-
cient algorithms can be obtained by choosing an adaptive relaxation parameter.
Some strategies to speed-up the convergence rate of Alg. (16) can be found in
[3],[5],[9].

4 Discretization of the forward problem

In order to implement Alg. (16) we need to solve efficiently the integral equation
for V (r) at each iteration step. In neuroscience literature the forward problem is
usually solved by a collocation BEM assuming that the primary current Jp can
be represented by a sum of current dipoles (see, for instance, [2, 17]). Here, we
discretize the boundary integral equations (8) by a Galerkin BEM [21] assuming
Jp has the sparse representation (12).

To formulate the Galerkin BEM for the EEG/MEG problem let us introduce
the integral operators:

(LBJ
p)(r) :=

µ0

4π

∫

G0

Jp(r′)× (r− r′)

|r− r′|3
· e(r) dr′ = −

µ0

4π

∫

G0

e(r)× (r− r′)

|r− r′|3
· Jp(r′) dr′ ,

(SBV )(r) := −
µ0

4π

m
∑

i=0

(σi+1 − σi)

∫

Si

V (r′)
r− r′

|r− r′|3
× ni(r

′) · e(r) dSi(r
′) ,

(LEJ
p)(r) :=

σ0
4π(σl+1 + σl)

∫

G0

Jp(r′) · (r− r′)

|r− r′|
dr′ ,

(SEV )(r) :=
1

4π

m
∑

i=0

(σi+1 − σi)

(σl+1 + σl)

∫

Si

V (r′)
r− r′

|r− r′|3
· ni(r

′) dSi(r
′) .

(17)
From (8)-(9) it follows that the unknown function V (r) ∈ H = L2(∪

m
i=0∂Gi)

satisfies the Fredholm integral equation of the second kind

(

[
1

2
I − SE ]V

)

(r) = (LEJ
p)(r) , r ∈ ∂Gl , l = 0, . . . ,m . (18)
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The integral operator for the component of the magnetic field along the direction
e(r) can be deduced from (6)-(7),

B(r) = B(r) · e(r) = (LBJ
p)(r) + (SB V )(r) , r ∈ R

3\ ∪mi=0 Gi . (19)

The Galerkin BEM consists in finding an element

VHλ
(r) =

∑

λ∈Λ

vλ ψλ(r) , (20)

belonging to the space

Hλ = span
(

(ψλ)λ∈Λ
)

⊂ H ,

such that
∑

λ∈Λ

vλ 〈(
1

2
I − SE)ψλ, ψµ〉 = 〈LEJ

p, ψµ〉 , (21)

for all ψµ, µ ∈ Λ. Classical results on boundary element methods (see [21]) allow
us to conclude that the Galerkin equations (21) have a unique solution. Moreover,
the numerical solution is quasi-optimal, i.e. the following error estimate holds

‖V − VHλ
‖H ≤ c inf

VHλ
∈Hλ

‖V − VHλ
‖H . (22)

The unknown coefficient vector Y = [vλ]λ∈Λ is the solution to the linear system

AE Y = BE , (23)

where

AE =
[

〈(
1

2
I − SE)ψλ, ψµ〉

]

µ,λ∈Λ
, (24)

and

BE =
[

〈LEJ
p, ψµ〉

]

µ∈Λ
. (25)

For later use it is more convenient to factorize BE as

BE = LE J , (26)

where

LE =
[

〈LEe
ℓ ψλ, ψµ〉

]

(µ,λ∈Λ)(ℓ=1,2,3)
, (27)

with eℓ, ℓ = 1, 2, 3, being the unitary versors of the coordinate system, and

J =
[

jℓλ
]

(λ∈Λ)(ℓ=1,2,3)
. (28)

Once the approximation VHλ
is evaluated, the magnetic field can be approxi-

mated by

BHλ
(r) = (LBJ

p)(r) + (SB VHλ
)(r) . (29)
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The entries of the matrix Tψ in Alg. (16) are the coefficients of BHλ
(r) and

VHλ
(r) w.r.t. j = (jλ)(λ∈Λ)(ℓ=1,2,3). To give the explicit expression of Tψ, let us

write VHλ
and BHλ

as a function of j. From (20), (23) and (26) it follows that

VHλ
(r) =

∑

λ∈Λ

∑

µ∈Λ

3
∑

ℓ=1

(A−1
E LE)

ℓ
µλ j

ℓ
µ ψλ (r) . (30)

Now, inserting (12) and (30) in (29) we get

BHλ
(r) =

∑

λ∈Λ

3
∑

ℓ=1

(LB(r))
ℓ
λ j

ℓ
λ +

∑

λ∈Λ

∑

µ∈Λ

3
∑

ℓ=1

(A−1
E LE)

ℓ
λµ j

ℓ
µ (SBψλ) (r) , (31)

where
LB(r) =

[

(LBe
ℓ ψλ)(r)

]

(λ∈Λ)(ℓ=1,2,3)
. (32)

Let

TE =





∑

µ∈Λ

(A−1
E LE)

ℓ
µλ ψµ (pi)





(i=1,...,N)(λ∈Λ,ℓ=1,2,3)

(33)

and

TB =



(LB(qi))
ℓ
λ ψλ (qi) +

∑

µ∈Λ

(A−1
E LE)

ℓ
µλ (SBψµ) (qi)





(i=1,...,M)(λ∈Λ,ℓ=1,2,3)

,

(34)
by (30) and (31) we obtain

Tψ =

[

TE
TB

]

(35)

We note that Alg. (16) can be implemented efficiently if the matrix T ∗ψTψ can
be approximated by a sparse finite matrix. Sparse representations of the integral
operators (17) can be obtained by using multiscale bases [6],[7],[24].

5 Numerical Tests

To give an idea of the behavior of Alg. (16) we consider a simple test problem, i.e.
the localization of current dipole sources in a homogeneous spherical conductor
G0 with radius R = 10cm. In this case the surface integrals in (29) vanish and the
magnetic and electric problems decouple. Nevertheless, the integration of electric
and magnetic data allows us to improve the source localization accuracy.

In these tests, the synthetic electromagnetic data are generated by three cur-
rent dipoles located at a depth of 0.1R below the surface of the sphere. One
dipole is radially oriented, so that it does not produce any external magnetic
field. The behavior of the electric potential and the radial component of the
magnetic field is shown in Fig. 1. To obtain the synthetic measurements, the
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radial component of the magnetic field has been sampled on M = 400 sites, dis-
tributed on a sphere of radius 1.1R concentric to G0, while the electric potential
has been sampled on N = 100 sites, located on the sphere surface. The electric
and magnetic data are scaled in order to have the same norm. Finally, a white
noise with linear snr equal to 1 has been added. The synthetic noisy data and
the sensor distribution are shown in Fig. 2.

The spherical conductor has been parametrized in a spherical coordinate
system and a linear finite element space with 643 degrees of freedom has been
used as approximation space. The inverse problem has been solved by the itera-
tive thresholding algorithm (16) with 20 iteration steps. Finally, the acceleration
strategy proposed in [3] has been used to speed-up the convergence rate.

In Fig. 3 (left) the intensity of the current density reconstructed by Al-
gorithm (16) is displayed. For comparison, the results obtained by classical
Tikhonov regularization are also shown (Fig. 3, right). A qualitative analysis
of the figures show that the proposed algorithm allows us to better focus the
current sources, while Tikhonov regularization produces a more blurred image
with fictitious sources.

In Tab. 1 the localization error (LE) and the spatial dispersion (SD) are
shown for each dipole source. Let σ be the source location and I(r) be the
intensity of the reconstructed current density. The LE is the distance between σ
and the location of the maximum of I(r) in the neighborhood of the source; the
SD is evaluated as ‖d(r)I(r)‖2/‖I(r)‖2. Smaller the values of LDE and SD, the
higher accuracy and smaller spread.

Alg. (16) Tikhonov
method

LDE (first source) 2.5 mm 3.4 mm

SD (first source) 0.06 mm 0.48 mm

LDE (second source) 1.9 mm 3.5 mm

SD (second source) 0.15 mm 0.22 mm

LDE (third source) 8.0 mm 9.7 mm

SD (third source) 0.18 mm 0.31 mm

Table 1. Localization error (LE) and spatial dispersion (SD).

It is interesting to observe that magnetic data or electric data give rise to
inaccurate localization when used uncoupled (see Fig. 4).

Even if this preliminary experiment has a very simple geometry and uses a
single approximation scale, the results show that both integration of electric and
magnetic data and joint sparsity allow to improve localization accuracy. Next
step will be to implement the algorithm on a real head geometry and to solve
the EEG/MEG problem using real high-level noisy data. When we deal with
real-life applications, we face some difficulties that require more sophisticated
numerical techniques. First of all spherical coordinate system may present sin-
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gularities, so that we need more efficient parametrization of the head. Moreover,
it would be useful to dispose of multiscale bases especially designed for repre-
senting neuroelectric currents. Finally, the processing of high noise electro- and
magneto-encephalographic signals require suitable estimator.

Fig. 1. Synthetic electric potential (left) and magnetic field (right).

Fig. 2. Synthetic noisy electric potential (left) and magnetic field (right). The sensor
sites are displayed as black points.
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