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Abstract

We use subdivision schemes with general dilation to efficiently evaluate

shape preserving approximations. To fulfill our goal the refinement rules of

the schemes are obtained by the refinement masks associated to refinable

ripplets, i.e. refinable functions whose integer translates form a variation

diminishing basis.
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1. Introduction

Shape preserving approximations are used in the design of curves or surfaces to
predict or control their ’shape’ by the shape of the control points, i.e. the vertices
of a given polygonal arc or polyhedral surface. Shape preserving approxima-
tions have applications, for instance, in Computer Aided Design, in Computer
Graphics and in the Design of Fonts (see [6, 13] for a survey on the topic). On
the other hand, in Approximation Theory the construction of approximation
operators that mimic the ’shape’, i.e. reproduce the monotonicity and/or the
convexity, of the function to be approximated is required in many applications
(see [7] and references therein). The key ingredient to construct shape preserv-
ing approximations and operators is the variation diminishing property.
Let U =

{

ui(x) , i ∈ Z
}

, Z ⊆ Z, x ∈ I ⊆ R, denote a function basis of a given
space

V =
{

v : v(x) =
∑

i∈Z

qi ui(x) , x ∈ I , qi ∈ R
}

. (1)

The basis U is variation diminishing if for any sequence q = {qi ∈ R , i ∈ Z},

S−
(

∑

i∈Z

qi ui(x)
)

≤ S−(q) , x ∈ I , (2)
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where S− denotes the strict sign changes in its argument ([14, 15]).
When U is a variation diminishing and normalized basis, i.e. U satisfies (2) and

∑

i∈Z

ui(x) = 1 , x ∈ I , (3)

then the numbers of times the curve

γ(x) =
∑

i∈Z

Pi ui(x) , Pi ∈ R
2 , x ∈ I , (4)

crosses any straight line L is bounded by the number of times the control polygon
Π = {Pi, i ∈ Z} crosses L. As a consequence, if the control polygon Π is
monotonic in a given direction, then so is the curve γ. Moreover, assume ui are
continuous; if the control polygon Π is convex, then so is the curve γ. Thus, we
say that γ is a shape preserving representation of Π [7, 15].
Now, let us assume that the monomial x can be represented by the basis U , i.e.
there exists a strictly increasing sequence of real numbers {ξi, i ∈ Z}, such that

x =
∑

i∈Z

ξi ui(x) , x ∈ I . (5)

Then, the linear operator

(Sf)(x) =
∑

i∈Z

f(ξi)ui(x) , x ∈ I , (6)

preserves the monotonicity and the convexity of f , i.e. Sf is a shape preserving

approximating operator [7].
In applications both the curve γ and the operator Sf need to be evaluated

efficiently. Our goal is to construct efficient algorithms for the generation of
shape preserving approximations.

The paper is as follows. In Section 2 we will describe some efficient shape
preserving algorithms to evaluate spline curves and we will show a strategy
to construct more general algorithms for the generation of shape preserving
approximations. In Section 3 we will introduce a wide family of algorithms and
analyze their properties and performances.

2. Refinable Ripplets and Subdivision Schemes

Well known examples of variation diminishing bases on R are the cardinal B-
splines, i.e. piecewise polynomial on integer knots (see the monographs [14, 15,
16] for basic definitions and main properties of B-splines).
Let BN denote the B-spline of degree N with N +2 integer knots on [0, N +1].
The basis BN = {BN(x − k), k ∈ Z}, x ∈ R, is variation diminishing ([14]) so
that the spline curve

γN (x) =
∑

k∈Z

Pk BN (x − k) , x ∈ R , Pk ∈ R
2 , (7)
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Figure 1: The spline curve γN representing the control polygonΠc (left) and the
operator SNf with f as in (10) (right) for N = 2 (solid line), N = 3 (dashed
line) and N = 4 (dotted line) . The control polygon (thin line), the control
points (circles), the function f (thin line) and the the points (ξk, f(ξk)) (circles)
with ξk = k + (N + 1)/2 ∈ [−3.5, 3.5] are also displayed.

is a shape preserving representation of the control polygon Π. Moreover, since
for N ≥ 1 ([16])

x =
∑

k∈Z

(

k + N+1

2

)

BN (x− k) , x ∈ R , (8)

the operator

(SNf)(x) =
∑

i∈Z

f
(

k + N+1

2

)

BN (x − k) , x ∈ R , N ≥ 1 , (9)

is shape preserving ([7]).
In Fig. 1 (left) some spline curves γN representing the closed control polygon

Πc = P1P2P3P4P5P6 with P1 ≡ P6 = (0, 0), P2 = (1, 0), P3 = (12 ,
2
3 ),

P4 = (1, 1), P5 = (0, 1), are shown. Here periodic conditions for closed curves
have been used. In Fig. 1 (right) the operator SNf when f is the function

f(x) =

{

(−3.5− x)(−3.5 + x) , −3.5 ≤ x ≤ 3.5 ,
0 , otherwise ,

(10)

is displayed for N = 2, 3, 4. We note that in case of closed interval suitable
boundary functions at the end points have to be used ([16]).

In order to evaluate efficiently the curve γN or the operator SNf suitable
algorithms are needed. For instance, the Chaikin’s algorithm [2]

Pm
2k =

3

4
Pm−1

k +
1

4
Pm−1

k+1 , Pm
2k+1 =

1

4
Pm−1

k +
3

4
Pm−1

k+1 , m ≥ 1 , (11)

is an efficient algorithm to generate quadratic spline curves starting from a
set of control points {P0

k}. Chaikin’s algorithm is a simple example of a wide
class of algorithms, usually called corner cutting algorithms. The algorithm cuts
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Figure 2: The first three iterations of the Chaikin’s algorithm (top-left, top-
right, bottom-left) and the limit quadratic spline curve (bottom-right) for the
control polygon Πc. The starting control points are displayed as circles.

iteratively the corners of the polygonal arc {Pm−1
k , k ∈ Z} converging in the limit

to a smooth curve (see [15] and references therein for details). In Fig. 2 the first
three iterations of the Chaikin’s algorithm and the limit quadratic spline curve
are displayed.

Chaikin’s algorithm is closely related to the property of the quadratic car-
dinal B-spline to be a refinable functions. In fact, for any N ≥ 0 the cardinal
B-spline BN satisfies the refinement equation

BN (x) =

(M−1)(N+1)
∑

k=0

bk,N,M BN (Mx− k) , x ∈ R , (12)

where the dilation M ≥ 2 is an integer and the sequence bN,M = {bk,N,M , 0 ≤
k ≤ (M−1)(N+1)} is the refinement mask ([3, 4]). For anyN andM held fixed,
the explicit expression of the mask coefficients bk,N,M , 0 ≤ k ≤ (M − 1)(N +1),
can be obtained by the equality

(M−1)(N+1)
∑

k=0

bk,N,M zk =
1

MN

(

1 + z + z2 + · · ·+ zM−1
)N+1

. (13)

For N = 2 and M = 2 the mask coefficients b0,2,2 = b3,2,2 = 1
4 and

b1,2,2 = b2,2,2 =
3
4 , are the same coefficients as those in the Chaikin’s algorithm

(11). More in general, any refinement mask bN,M gives rise to the subdivision

algorithm







P0
k = Pk ∈ R

2 , k ∈ Z ,

Pm
j =

∑

k∈Z
bj−Mk,N,M Pm−1

k , j ∈ Z , m ≥ 1 ,
(14)

(see [1, 5] for a complete treatment of the topic). Starting from the initial set of
points {P0

k} attached to the regular grid MZ, the algorithm generates denser
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Figure 3: The first two iterations of the Chaikin’s algorithm (11) (left) and of
the subdivision scheme (17) (right). The control polygon (thin line) and the
control points (circles) are also displayed.

sequences of points parametrized so that the points Pm
k correspond to the finer

grid M−m
Z. In the limit the denser point sequences converge to the N -degree

spline curve γN representing the polygon {P0
k, k ∈ Z}. In particular, for M = 2

we have a dyadic refinement with refinement mask bN,2 = {bk,N,2} given by
([3])

bk,N,2 =
1

2N

(

N + 1

k

)

, 0 ≤ k ≤ N + 1 , (15)

while for M = 3 we have a ternary refinement with refinement mask bN,3 =
{bk,N,3} ([12])

bk,N,3 =
1

3N

k
∑

j=[(k+1)/2]

(

N + 1

j

)(

j

k − j

)

, 0 ≤ k ≤ 2(N + 1) . (16)

In particular, the explicit expression of the subdivision algorithm associated
with the refinement mask b2,3 is given by























Pm
3k = 1

9 P
m−1
k + 7

9 P
m−1
k+1 + 1

9 P
m−1
k+2 ,

Pm
3k+1 = 1

3 P
m−1
k + 2

3 P
m−1
k+1 ,

Pm
3k+2 = 2

3 P
m−1
k + 1

3 P
m−1
k+1 ,

m ≥ 1 . (17)

As the Chaikin’s algorithm, the algorithm above converges to the quadratic
spline curve representing the control polygon Π = {P0

k, k ∈ Z} but the conver-
gence is faster since at any iteration the points are multiplied by three. This
can be seen in Fig. 3 where the first two iterations of the Chaikin’s algorithm
and the subdivision scheme (17) are displayed.

The B-spline example suggests us a strategy to construct efficient algorithms
giving rise to shape preserving approximations. First of all, we note that the
variation diminishing property of the cardinal B-spline basis BN relies on the
property of BN to be a ripplet.
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We recall that a function u is said to be a ripplet if for any strictly increasing
sequence {xi ∈ R, 1 ≤ i ≤ p} all the minors of the collocation matrix (u(xi −
k), k ∈ Z, 1 ≤ i ≤ p) are non negative [8].

Thus, the first step to construct efficient shape preserving algorithms is the
construction of refinable ripplets, i.e. ripplets satisfying the refinement equation

ϕa(x) =

(M−1)(N+1)
∑

k=0

ak ϕa(Mx− k) , x ∈ R , (18)

where the sequence a = {ak ∈ R, 0 ≤ k ≤ (M − 1)(N + 1)} is the refinement
mask. Conditions on the mask coefficients ensuring that ϕa is a ripplet was
given in [8] for dilation M = 2 and in [9] for dilation M ≥ 3.

Since ϕa is a ripplet, the basis Φa = {ϕa(x − k), k ∈ Z}, x ∈ R, enjoys the
variation diminishing property and the curve

γa(x) =
∑

k∈Z

Pk ϕa(x − k) , Pi ∈ R
2 , x ∈ R , (19)

preserves the shape of the control polygon Π = {Pk, k ∈ Z}.
On the other hand, when ϕa is refinable, the refinement mask a can be used

in a subdivision algorithm to evaluate efficiently the curve γa. In fact, when ϕa

is a ripplet the algorithm







P0
k = Pk ∈ R

2 , k ∈ Z ,

Pm
j =

∑

k∈Z
aj−Mk P

m−1
k , j ∈ Z , m ≥ 1 ,

(20)

converges to γa [1, 8, 9].
Moreover, if there exist real numbers ξk, k ∈ Z, such that

x =
∑

k∈Z

ξk ϕa(x− k) , x ∈ R , ξk < ξk+1 , (21)

then the linear operator

(Saf)(x) =
∑

k∈Z

f(ξk)ϕa(x− k) , x ∈ R , (22)

is a shape preserving representation of the function f and the subdivision algo-
rithm







f0
k = f(ξk) , k ∈ Z ,

fm
k =

∑

k∈Z
aj−Mk f

m−1
j , j ∈ Z , m ≥ 1 ,

(23)

converges to Saf [5, 8, 9].
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Figure 4: Left: The coefficients of the refinement mask ah,2,2 (circles) for h =
0.75 (solid line), h = 0.5 (dashed line) and h = 0.25 (dotted line). Right: The
C0-refinable function ϕh,2,2 for h = 0.75 (solid line), h = 0.5 (dashed line) and
h = 0.25 (dotted line). For comparison, the mask a1,2,2 ≡ b2,2 and ϕ1,2,2 ≡ B2

are also displayed (thin line).

3. Classes of shape preserving subdivision schemes

Wide classes of refinable ripplets with dilation M = 2, 3 were constructed in
[10, 12]. They are solution to the refinement equation

ϕh,N,M (x) =

(M−1)(N+1)
∑

k=0

ak,h,N,M ϕh,N,M(Mx− k) , x ∈ R , (24)

where any refinement mask ah,N,M = {ak,h,N,M ∈ R, 0 ≤ k ≤ (M − 1)(N + 1)}
is a positive, bell-shaped, centrally symmetric sequence. For any N ≥ 2 and
M = 2, 3, the explicit expression of the mask coefficients is given by

ak,h,N,M = h bk,N,M + (1 − h) bk−1,M+N−4,M , (25)

where 0 ≤ h ≤ 1 is a real parameter and br,N,M = 0 for r < 0 and r >
(M − 1)(N + 1).
The parameter h acts as a shape parameter that controls the shape of the re-
finable ripplet ϕh,N,M through the values of the mask coefficients. The relation
between the behavior of the mask coefficients and the shape of the correspond-
ing refinable function is put in evidence in Fig. 4 and Fig. 5 where the graphs
of ϕh,2,2 and ϕh,2,3 for different values of h are displayed. We note that both
ϕh,2,2 and ϕh,2,3 have compact support [0, 3] but ϕh,2,2 is just C0 while ϕh,2,3

belongs to C1.
The properties of ϕh,N,M are related to the properties of the refinement mask

ah,N,M . In particular, since any mask (25) is compactly supported, positive,
centrally symmetric and bell-shaped any refinable ripplets ϕh,N,M is compactly
supported with suppϕh,N,M = [0, N + 1], positive on (0, N + 1), centrally sym-
metric and bell-shaped. Moreover, ϕh,N,M ∈ CN+M−4 (see [10, 12] for details).
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Figure 5: Left: The coefficients of the refinement masks ah,2,3 (circles) for
h = 0.75 (solid line), h = 0.5 (dashed line) and 0.25 (dotted line). Right: The
C1-refinable function ϕh,2,3 for h = 0.75 (solid line), h = 0.5 (dashed line) and
h = 0.25 (dotted line). For comparison, the mask a1,2,3 ≡ b2,3 and ϕ1,2,3 ≡ B2

are also displayed (thin line).

Consider now the function system

Φh,N,M = {ϕh,N,M(x− k)}k∈Z
, x ∈ R , N ≥ 2 , M = 2, 3 .

Since ϕh,N,M is a ripplet, Φh,N,M is variation diminishing and the curve

γah,N,M
(x) =

∑

k∈Z

Pk ϕh,N,M (x− k) , Pk ∈ R
2, x ∈ R , (26)

has shape preserving properties. Moreover, for N ≥ 5 − M it can be proved
that the monomial x can be represented as

x =
∑

k∈Z

(

k + N+1

2

)

ϕh,N,M (x− k) , x ∈ R , (27)

so that the operator

(

Sah,N,M
f
)

(x) =
∑

k∈Z

f
(

k + N+1

2

)

ϕh,N,M (x− k) , x ∈ R , (28)

is shape preserving ([11, 12]).
Both γah,N,M

and Sah,N,M
can be evaluated efficiently by a subdivision algorithm

similar to that one in (20) and (22), respectively.
Fig. 6 shows how the parameter h affects the shape of the closed curves

γh,2,2 and γh,2,3 when representing the control polygon Πc. We note that for
any h ∈ (0, 1) γh,2,2 is a C0-curve that cuts the corner sharply while γh,2,3 is a
C1-curve that rounds the corner smoothly. Finally, the graphs in Fig. 7 show the
different behavior of the non shape preserving operator Sah,2,2

f in comparison
with the behavior of the shape preserving operator Sah,2,3

f . Here f is as in
(10). We note that optimal bases on closed intervals were constructed in [11]
for dilation M = 2 and in [12] for dilation M = 3.

8



Figure 6: The C0-curves γh,2,2 (left) and the C1-curves γh,2,3 (right) for h = 0.75
(solid line), h = 0.5 (dashed line) and h = 0.25 (dotted line) representing the
control polygon Πc. The quadratic B-spline curve is also displayed (thin line).
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Figure 7: The operators Sh,2,2f (solid line left), Sh,2,3f (solid line right) for
h = 0.5 and the quadratic B-spline operator (dashed line left). The function f
(thin line) and the the points (ξk, f(ξk)) (circles) with ξk = k+3/2 ∈ [−3.5, 3.5]
are also displayed.
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