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Abstract

The magnetoencephalography (MEG) aims at reconstructing the unknown
electric activity in the brain from the measurements of the magnetic field
in the outer space. The MEG inverse problem is ill-posed and/or ill-
conditioned thus further constraints are needed to guarantee a unique
and stable solution. Assuming that neural sources are confined in small
regions of the brain, the sparsity constraint can be used as a regulariza-
tion term. Thus, the solution of the inverse problem can be approximated
by iterative thresholding algorithms. In order to identify an efficient in-
version method for the MEG problem, we compare the performance - ef-
ficiency, accuracy, computational load - of some thresholding algorithms
when localizing a single neural source. The numerical tests will give some
suggestions on the construction of an efficient algorithm to be used in real
life applications.

Keywords: Magnetoencephalography, Sparsity constraint, Iterative threshold-
ing algorithm

1. Introduction

A magnetoencephalographic (MEG) system measures the neuromagnetic field
generated outside the head by the electric activity of the brain. MEG devices
sample the magnetic field on N sites, say ~ql, l = 1, . . . , N , located on a ’helmet’
external to the head. Here, we consider the case of devices equipped with
magnetometers. These sensors measure just the projection of the magnetic
field along the direction ~e(~ql), which is usually the normal with respect to the
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magnetometer coil (for a complete review on the magnetoencephalography see,
for instance, [4] and [11]).

Actually, the quantity of interest is the electric current distribution flowing
inside the brain since its image gives insight on the brain functionality. As a con-
sequence, the use of the magnetoencephalography as a neuroimaging technique
requires the solution of an inverse problem.

Although the generation of the neuromagnetic field by a neuroelectric source
is a complex phenomenon, the assumption of linear dependence of the observa-
tions - the magnetic data - on the quantity of interest - the neuroelectric current
distribution - can be feasible. In fact, the projection Be(~ql) along ~e(~ql) of the

neuromagnetic field measured in ~ql is related to the total current ~J flowing
inside the brain volume V0 by the Biot-Savart law [15]

Be(~ql) =
µ0

4π

∫

V0

(

~e(~ql)×
~r′ − ~ql

|~r′ − ~ql|3

)

· ~J(~r ′) d~r ′ . (1)

Here ~v × ~w and ~v · ~w are the usual cross and scalar products of vectors in
R

3, respectively, and |~v| is the Euclidean norm. Usually, the total current is
modeled as a sum of a finite number of elementary sources, i.e.

~J(~r ′) =

M
∑

k=1

~Jk ψk(~r
′ ) , (2)

where Jk = (Jx
k , J

y
k , J

z
k ) is the current intensity of the k elementary source

having spatial distribution ψk.
Now, let T = (tℓlk), l = 1, . . . , N , k = 1, . . . ,M , ℓ = x, y, z, be the lin-

ear mapping relating the measurement vector G = (gl), l = 1, . . . , N , to the
unknown intensity vector J = (Jℓ

k), k = 1, . . . ,M , ℓ = x, y, z, i.e.

G = T J . (3)

Thus, the explicit expression of the entries of T can be obtained by inserting
(2) in (1):

tℓlk =
µ0

4π

∫

V0

(

~e(~ql)× (~r ′ − ~ql)

|~r ′ − ~ql|3

)

ℓ

ψk(~r
′) d~r ′ . (4)

T is usually called the lead field matrix since each row (tℓlk)l=1,··· ,N,ℓ=x,y,z repre-
sents the contribution of the k elementary source to the overall magnetic field.
Usually, the linear mapping T is not invertible or is ill-conditioned [11]. More-
over, the data G can be incomplete and corrupted by noise. Thus, in order to
reconstruct the (unknown) intensity vector J from the measurements G, further
constraints on the solution are needed, i.e. a regularization technique is required
[1],[7],[13],[16].

Facing the problem of reconstructing localized neuroelectric current, it is
rather natural to assume that the electric current distribution is spatially sparse

with respect to a pre-assigned basis [9]. This means that ~J in (2) can be well
approximated by a series expansion with only a small number of non-vanishing
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coefficients [5]. Sparsity also means that only little information is conveyed by ~J.
Thus, it is reasonable to expect that only few measurements might be sufficient
to characterize and reconstruct the unknown vector J . Assuming that J can
be compressed by the basis (ψk), sparsity can be modeled by requiring that the
vector J is contained in ℓ1(K), where K is a small subset of {1, . . . ,M}. Indeed,
the minimization of the ℓ1(K)-norm promotes that only a few entries of J are
non-zero [14].

The solution of the linear system (3) under sparsity constraints is obtained
by minimizing the functional

J (J) = ‖G− TJ‖22 +Ψ(J) , (5)

where Ψ(J) is a sparsity measure. Thus, sparsity acts as a regularization term.
The minimizer of J (J) with respect to J can be approximated by an itera-

tive thresholding algorithm. The algorithm starts from an initial guess J (0) and
iteratively updates the approximation by minimizing ||G − TJ ||22 in the direc-
tion of its gradient and promoting the ℓ1 minimization via thresholding [3],[6].
Denoting by Sσ the thresholding operator with threshold σ, the nth iteration
step is

J (n+1) = Sσ

(

J (n) + γ(n)T ∗(G− T J (n))
)

, n ≥ 0 , (6)

where γ(n) is a (fixed or adaptive) descent parameter that can be used to speed
up the convergence rate. The algorithm was proved to be convergent. In prac-
tice, the iterations are stopped when ‖G−T J (n)‖2 ≤ η, where η is an estimation
of the noise level of the data.

In the literature many sparsity measures have been proposed (see, for in-
stance, [2], [3],[6],[10],[12]) giving rise to different thresholding operators and
algorithms. In this paper we want to compare the performance of some sparsity
measures based on the ℓ1-norm in the solution of the MEG inverse problem. As
the numerical tests will show, the sparsity constraints are suitable for the local-
ization of deep focal sources that cannot be localized by the classical Tikhonov
regularization based on the ℓ2-norm [16].

2. Numerical tests

To perform the numerical tests we assume the k elementary source is a point-
like current located in ~rk ∈ V0, i.e. ψk(~r

′) = δ(~rk −~r
′). Thus, the entries of the

lead field matrix (4) become

tℓlk =
µ0

4π

V0

M

(

~e(~ql)× (~rk − ~ql)

|~rk − ~ql|3

)

ℓ

. (7)

The set up of the numerical experiment is as follows. The conducting volume
V0 is a homogeneous sphere of radius R = 8 cm. Since deep sources produce a
very small magnetic field in the outer space and cannot be detected by magnetic
data, we do not put any elementary source in the core of V0, i.e. a small sphere
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Figure 1: The conducting volume (left) and the magnetic field (right) generated
by a single current dipole at depth 1 cm. The conducting volume consists in the
spherical shell between the external (blue) sphere and the internal (red) sphere.
The black circles represent the magnetometer sites.

of radius 3 cm concentric with V0. The magnetic field in the outer space is
generated by a single neuroelectric source which is described as a current dipole
located at different depth - between 0.6 to 4.6 cm - below the surface of V0 (cf.
[15]). The magnetic data are obtained by the radial projection of the generated
magnetic field sampled in N = 144 sites uniformly distributed on a spherical
surface of radius 10 cm concentric with V0 (see Fig. 1).

The first test concerns a comparison of the different lead field matrices we ob-
tain when using different distributions of the elementary sources inside the con-
ducting volume V0. High accuracy reconstruction requires hundreds of sources
located in a dense uniform grid [17], usually having a spatial resolution of 3-
4 mm. In the following tests we use a grid of 4 mm resolution resulting in
about 30000 elementary sources inside V0. To be precise, M = 29336 so that
the lead field matrix T has 144 rows and 88008 columns. Since the entries of T
corresponding to deep elementary sources have small magnitude, the lead field
matrix is preconditioned by a column balancing, i.e. each column is divided by
its norm. Fig. 2 shows the structure of the lead field matrix T (left) and of the
preconditioned matrix Tc (right).

The use of a uniform source distribution may be computationally demanding
when solving the MEG inverse problem using a real head geometry since in this
case the resulting inverse problem has very large dimension. To reduce the
computational load it could be better to solve a number of inverse problems of
small dimension using for each trial a different distribution of few elementary
sources. Thus, we locate about 1000 sources, randomly distributed in V0, and
solve 30 different inverse problems. High accuracy can be recovered by collecting
together the solutions of all the trials. The structure of the lead field matrix and
of the preconditioned matrix for a single small problem is shown in Fig. 3. To
give an idea of the conditioning of the lead field matrix in Fig. 4 the amplitude
of the singular values of the matrices T and Tc displayed in Figs. 2-3 are shown.

The second test concerns the solution of the inverse problem. In particular,
we compare the accuracy of different inversion methods in localizing a current
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Figure 2: The lead field matrix T (left) and the preconditioned matrix Tc (right)
when the elementary sources are distributed on a uniform grid. In the pictures
the matrix entries (in arbitrary units) are displayed as a function of the row and
column indexes.

Figure 3: The lead field matrix T (left) and the preconditioned matrix Tc (right)
when the elementary sources are randomly distributed. In the pictures the
matrix entries (in arbitrary units) are displayed as a function of the row and
column indexes.
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Figure 4: The amplitude (circles) of the singular values of T (bottom) and Tc
(top) for the two different elementary source distributions (uniform grid: solid
lines; random points: dashed lines). The N = 144 singular values are ordered
with decreasing amplitude. The graphs are in logarithmic scale.
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Figure 5: The localization error (left) and the direction error (right) as a function
of the depth of the source when the elementary sources are located on a uniform
grid and the lead field matrix is preconditioned by column balancing. The four
graphs refer to ℓ2-norm (solid line), hard thresholding (dash-dotted line), joint
hard thresholding (dotted line), soft thresholding (dashed line).

dipole with moment ~Q0 located in a point ~P0 inside the conducting sphere. For
each test we evaluate the distance localization error (DLE) and the direction

error (DRE). The DLE is defined as the distance between ~P0 and the position
~Pmax of the maximum of the reconstructed current intensity; the DRE is defined
as the angle between ~Q0 and the direction of the reconstructed current in ~Pmax.
To solve the inverse problem with sparsity constraints, we use three different

thresholding operators Sσ, i.e. soft thresholding, hard thresholding and joint
hard thresholding (see [8],[14] and references therein for details). For soft and
hard thresholding, Sσ(J

(n)) =
(

sσ(J
(n))ℓk

)

k=1,...,M,ℓ=x,y,z
is a component-wise

non linear operator acting on each entry (J (n))ℓk of the approximated vector
J (n) as

sσ(J
(n))ℓk =











(J (n))ℓk − sign (J (n))ℓk
σ

2
, if |(J (n))ℓk| ≥

σ

2
,

0 , otherwise ,

(8)

for soft thresholding, and as

sσ(J
(n))ℓk =











(J (n))ℓk , if |(J (n))ℓk| ≥
σ

2
,

0 , otherwise ,

(9)

for hard thresholding. Instead, the joint hard thresholding Sσ acts on the three-

dimensional approximated vector ~J
(n)
k =

(

(J (n))xk, (J
(n))yk, (J

(n))zk
)

as follows:

Sσ(J
(n)) = sσ

(

~J
(n)
k

)

k=1,...,N
, (10)
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Figure 6: The localization error (left) and the direction error (right) as a function
of the depth of the source when the elementary sources are randomly distributed
and the lead field matrix is preconditioned by column balancing. The four
graphs refer to ℓ2-norm (solid line), hard thresholding (dash-dotted line), joint
hard thresholding (dotted line), soft thresholding (dashed line).

where

sσ
(

~J
(n)
k

)

=











~J
(n)
k , if ‖ ~J

(n)
k ‖2 ≥

σ

2
,

0 , otherwise .

(11)

In the numerical tests, the threshold σ is adaptively chosen at each iteration as

σ = 0.8 maxk,ℓ |(J
(n))ℓk| (soft and hard thresholding) or σ = 0.8 maxk ‖ ~J

(n)
k ‖2

(joint hard thresholding).
The localization error and the direction error obtained by the different

thresholding algorithms for the uniform and the random distributions of the
elementary sources are shown in Fig. 5 and Fig. 6, respectively. For a com-
parison, the errors obtained by the classical ℓ2-norm regularization are also
displayed. To see how the preconditioning of the lead field matrix improves the
localization results, in Fig. 7 and Fig. 8 the localization and direction errors
obtained without preconditioning are shown.

3. Discussion

The numerical results in the previous section show that by using a random
distribution of elementary sources we can considerably reduce the computational
load while keeping a good accuracy in the localization. Actually, the matrix T
(or Tc) has several tens of millions of entries in the case of elementary sources
located on a thick uniform grid, while has no more than half a million of entries
in the case of few elementary sources randomly distributed. This dramatic
reduction of the memory storage allows us to run the latter algorithm on a
laptop with a computing time of a few seconds. We notice also that to increase
the computational points, that is to increase the accuracy of the localization, it
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Figure 7: The localization error (left) and the direction error (right) as a function
of the depth of the source when the elementary sources are located on a uniform
grid and the lead field matrix is not preconditioned. The four graphs refer to ℓ2-
norm (solid line), hard thresholding (dash-dotted line), joint hard thresholding
(dotted line), soft thresholding (dashed line).
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Figure 8: The localization error (left) and the direction error (right) as a function
of the depth of the source when the elementary sources are randomly distributed
and the lead field matrix is not preconditioned. The four graphs refer to ℓ2-
norm (solid line), hard thresholding (dash-dotted line), joint hard thresholding
(dotted line), soft thresholding (dashed line).
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is just sufficient to increase the number of trials without increasing the memory
storage.

Moreover, the random distribution has better performance in the localiza-
tion. In fact, the graphs in Figs. 5-6 show that in this case the localization error
is slightly lower than the error in the uniform grid case while the direction error
is highly reduced. In a next paper we intend to analyze how different random
distributions of the elementary sources can affect the localization results.

As for the thresholding algorithms, the localization and direction errors in
Fig. 6 show that all the algorithms have a good accuracy in localizing superficial
sources while just soft thresholding is able to recover deep sources. On the
other hand, hard thresholding is better in recovering the direction of the electric
current. Joint hard thresholding instead does not reduce the direction error.
We notice that, as expected, classical ℓ2-regularization has a poor accuracy in
localizing deep sources while, more surprisingly, has a rather good accuracy in
recovering the direction.

Finally, the graphs in Figs. 7-8 show that the preconditioning of the lead
field matrix by a column balancing is mandatory to reduce the localization
error while the increase of the direction error obtained without preconditioning
is very high just for soft thresholding.

4. Conclusion

We compared different inversion methods for the localization of a neural source
inside the brain. Even if we used a simple model for both the head and the
source, the numerical tests we performed give some hints on how to construct
an efficient inversion algorithm. Summarizing, the soft thresholding algorithm
with a random distribution of elementary sources and a column balancing seems
the best algorithm to use for the localization of neural sources since it is fast,
accurate and has a low computational load. If the recovering of the direction is
also required, algorithms combining soft and hard thresholding should be used.

The next step will be the implementation of these inversion methods on real
data, i.e. magnetoencephalographic data acquired by a MEG device on human
subjects.
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