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Abstract

In this paper we construct a class of totally positive refinable func-

tions, obtained by a suitable use of certain nonstationary subdivision

schemes. These functions are characterized by having small support

and their smoothness can be established a priori. Further properties,

such as partition of unity and reproduction of linear functions, are

analyzed. Finally, Bernstein-like bases are constructed.

1 Introduction

Total positivity plays a main role in several problems of approximation the-
ory, as well as in CAGD [8]. Examples of totally positive functions are pro-
vided by the well-known B-splines or, more in general, by a class of paramet-
ric refinable functions, that present a great flexibility in several applications
[11],[12].

The intimate connection between refinability and subdivision schemes is
well known and recently suggested the possibility of exploiting nonstationary
subdivision schemes for the construction of some totally positive functions
[4].
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In this paper we present the construction of a new class of totally positive
functions, obtained by a suitable use of certain nonstationary subdivision
schemes. These functions are characterized by having small support and a
smoothness that can be established a priori.

The outline of the paper is as follows. In Sect. 2 we collect some defini-
tions concerning totally positive refinable functions, both in the stationary
and nonstationary framework. In Sect. 3 some basic facts about subdivision
schemes are recalled. Sect. 4 is devoted to the introduction of a new class
of nonstationary subdivision schemes that generates totally positive refin-
able functions; some interesting properties of these function are also given.
Finally, in Sect. 5 we construct the corresponding Bernstein-like bases.

2 Totally Positive Refinable Functions

Let φm, m ≥ 0, be a collection of nonstationary refinable functions, i.e.
functions satisfying a set of nonstationary refinement equations of the type

φm =
∑

α∈Z

amα φm+1(2 · −α), m ≥ 0, (2.1)

where the sequences am = {amα }α∈Z, m ≥ 0, are the refinement masks [3],[9].
In the following we assume am having compact support.

When am = a = {aα}α∈Z for all m ≥ 0, (2.1) reduces to the stationary

refinement equation

φ =
∑

α∈Z

aα φ(2 · −α). (2.2)

The existence and the properties of both (2.1) and (2.2) are related to
the properties of the symbols of the masks am and a, respectively, i.e. the
Laurent polynomials

am(z) :=
∑

α∈Z

amα z
α, m ≥ 0, a(z) :=

∑

α∈Z

aα z
α. (2.3)

In particular, necessary conditions for the existence and uniqueness of solu-
tions to (2.1) and (2.2) are am(1) = 2 and a(1) = 2, respectively.

In this context, we are interested in functions that are both refinable and
totally positive. We recall that a function f is said to be totally positive if
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for any sequences x1 < · · · < xp, xi ∈ R, and α1 < · · · < αp, αj ∈ Z, p ≥ 1,
the collocation matrix

F

(
x1, . . . , xp
α1, . . . , αp

)
:= det

i,j=1,...,p
f(xi − αj) (2.4)

is totally positive.
While there are several examples of totally positive refinable functions in

the stationary case, as the well-known B-splines on integer knots and the GP
class introduced in [11], not many examples are known in the nonstationary
setting. Typical examples are the up-function, introduced in [16] in the con-
text of the solution of functional differential equations, and the exponential
B-splines [15]. In particular, the up-function can be viewed as the solution
φ0 of the nonstationary refinement equations

φm =
∑

α∈Z

cmα φm+1(2 · −α), m ≥ 0, (2.5)

where

cmα =
1

2m

(
m+ 1

α

)
, α = 0, . . . ,m+ 1, (2.6)

are the entries of the refinement mask of the B-spline of degree m [3],[5].
The power of the nonstationary framework is highlighted by the remarkable
property of the up-function that it belongs to C∞(R) while still having a
small support, namely [0, 2] (see Fig. 1, left). This means that nonstationary
schemes allow us to obtain basic limit functions with small support, since it
is related to the starting mask, and high smoothness, that is given by the
limit mask.

By using the masks (2.6), it is not possible to construct other nonsta-
tionary refinable functions since m is the unique freedom degree. Instead,
new classes of nonstationary refinable functions can be obtained by combin-
ing the B-spline masks and the GP masks q(n,h) = {q

(n,h)
α }0≤α≤n+1, whose

explicit expression is [11]

q(n,h)α =
1

2h

[(
n+ 1

α

)
+ 4(2h−n − 1)

(
n− 1

α− 1

)]
, α = 0, . . . , n+ 1, (2.7)

where n ≥ 2 is a fixed integer and h ≥ n is a real parameter. (We set
(
n

l

)
= 0

when 0 < l or l > n.) The corresponding symbols are

q(n,h)(z) =
1

2h
(z + 1)n−1

(
z2 + 2(2h−n+1 − 1)z + 1

)
. (2.8)
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Figure 1: Up-function (left) and GP refinable function (right) with n = 3
and h = 4 (dotted line), h = 5 (dash-dotted line), h = 10 (solid line). The
dashed line represents the cubic B-spline.

When q(n,h), with n and h held fix, is used in a stationary refinement equa-
tion, the associated refinable function, say σ(n,h), has support [0, n + 1] and
belongs to Cn−2(R). The parameter h acts as a tension parameter: while h
ranges from n to ∞, the shape of the refinable function changes continuously
from the shape of the B-spline of degree n to the one of the B-spline of degree
n − 2 without reaching it (see Fig. 1, right). In Sect. 4 we will show how
to combine the masks of the B-splines and the masks q(n,h) in nonstationary
subdivision schemes in order to construct nonstationary refinable functions
with small support and high smoothness.

3 Nonstationary Subdivision Schemes

Refinement masks can be associated to subdivision schemes, i.e. iterative
schemes based on simple refinement rules generating denser and denser se-
quences of points convergent to a continuous curve or surface. By defining
the k-level subdivision operator Sak : ℓ(Z) → ℓ(Z) as

(Sak λ)α :=
∑

β∈Z

akα−2β λβ, α ∈ Z, (3.1)

the nonstationary subdivision scheme is given by [3], [7]

λ
0 := λ, λ

k+1 := Sak λ
k, k ≥ 0. (3.2)

When the refinement rule is the same at each iteration, i.e. ak = a for all k,
the scheme is said to be stationary [2], [7].
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A subdivision scheme is said to be Cν if, for any initial sequence λ ∈
ℓ∞(Z) (the linear space of bounded scalar sequences), there exists a limit

function fλ ∈ Cν(R) satisfying

lim
k→∞

sup
α∈Z

∣∣∣fλ
(
2−kα

)
− λkα

∣∣∣ = 0 (3.3)

with fλ 6= 0 for at least some initial data λ. As usual, we shall denote the
limit function as

fλ := S∞
{am} λ = lim

k→∞
Sam+k · · ·Sam+1 Sam λ, k > 0. (3.4)

The key ingredient to study the convergence of a nonstationary subdi-
vision scheme and the smoothness of its limit function is the asymptotic

equivalence of subdivision schemes. In particular, we restrict here to the
asymptotic equivalence between a nonstationary subdivision scheme and a
stationary one [6].

Definition 1. A nonstationary subdivision scheme S{am} is said to be asymp-
totically equivalent to a stationary one S{a}, in symbols S{am} ≈ S{a}, if

∞∑

m=0

‖S{am} − S{a}‖∞ <∞, (3.5)

where ‖S{a}‖∞ := max
α∈{0,1}

{∑

β∈Z

|aα−2β|
}
.

The convergence and smoothness of a nonstationary subdivision sche-
me asymptotically equivalent to a stationary scheme can be deduced by the
following proposition, which is a consequence of Theorems 7 and 10 in [6].

Proposition 3.1. Let S{am} be a nonstationary scheme with supp {am} ⊂
[0, n], n < ∞. If S{am} ≈ S{a}, where S{a} is a C0 stationary scheme with

compact support, then S{am} is C0. Moreover, if

ak(z) =
(1 + z)γ

2γ
bk(z), k ≥ K ≥ 0, (3.6)

where S{bm} is C0, then S{am} is Cγ.
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It is well known that subdivision schemes and refinable functions are
strictly related each other. Actually, if the starting sequence of a conver-
gent subdivision scheme is the delta-sequence δ0 = {δα,0}α∈Z, the basic limit

functions

φm := S∞
{am} δ0, m ≥ 0, φ := S∞

{a} δ0, (3.7)

are just the solutions to the refinement equations (2.1) and (2.2), respectively.
Moreover, the nonstationary refinement equations (2.1) can be associated

to a nonstationary cascade algorithm as follows [9].

Definition 2. Given a sequence of masks {am}m≥0, the associated nonsta-
tionary cascade algorithm generates the sequences of functions

{hm,k}m≥0,k>0, by the algorithm

hm,k =
∑

α∈Z

akα hm+1,k−1(2 · −α), m ≥ 0, k > 0. (3.8)

For the convergence, the starting functions hm,0 have to satisfy the con-
ditions {

hm,0 → h̃0 ∈ L2(R), as m→ ∞,

ĥm+k,0

(
2−k ω

)
→ 1, ω ∈ R as k → ∞,

(3.9)

uniformly in m and locally uniformly in ω. Conditions (3.9) are easily satis-

fied if hm,0 = h̃0 for all m ≥ 0, where h̃0 is a given function with
̂̃
h0(0) = 1.

It is also convenient to choose a stable starting sequence, i.e. a sequence
{hm,0}m≥0 such that

Am

∑

α∈Z

|fα|
2 ≤

∥∥∥∥∥
∑

α∈Z

fα hm,0(· − α)

∥∥∥∥∥

2

≤ Bm

∑

α∈Z

|fα|
2
, m ≥ 0, (3.10)

where 0 < Am ≤ Bm.
The nonstationary cascade algorithm (3.8) is related to the nonstationary

subdivision scheme (3.2) by the equations

hm,k =
∑

α∈Z

sm,k
α hm+k,0(2

k · −α), k > 0, m ≥ 0, (3.11)

where
sm,k := Sam+k−1 · · ·Sam+1 Sam δ0. (3.12)

The convergence of the nonstationary cascade algorithm can be inferred
from the convergence of the corresponding subdivision scheme, as the follow-
ing theorem from [9] shows.
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Theorem 3.2. (Goodmann, Lee) Given a mask sequence {am}m≥0 such

that S{am} ≈ S{a}, and a stable starting sequence {hm,0}m≥0, one has

φm = S∞
{am} δ0 ⇔ lim

k→∞
‖hm,k − φm‖∞ = 0, m ≥ 0. (3.13)

4 New Classes of Nonstationary Subdivision

Schemes

New classes of nonstationary subdivision schemes, whose basic limit functions
are totally positive refinable functions, can be generated by combining B-
splines masks and GP refinement masks. A first example was given in [4]
where Cn−1(R) totally positive refinable functions having support [0, n] have
been introduced. Here, we will construct totally positive refinable functions
having the same smoothness but smaller support than the functions in [4].

Consider the class of nonstationary subdivision schemes

A := {S{a(n,m)}, n ≥ 2,m ≥ 0, µ > 1}, (4.1)

with k-level refinement masks given by




a
(n,k)
α :=

1

2k

(
k + 1

α

)
, 0 ≤ k ≤ ν − 1,

a
(n,k)
α :=

1

2n+k−µ

[(
n+ 1

α

)
+ 4(2k

−µ

− 1)

(
n− 1

α− 1

)]
, ν ≤ k,

(4.2)
where ν is a given integer with 1 ≤ ν ≤ n and µ > 1 is a real parameter.
The corresponding symbols are





a(n,k)(z) =
1

2k
(1 + z)k+1, 0 ≤ k ≤ ν − 1,

a(n,k)(z) =
1

2n+k−µ (1 + z)n−1
(
z2 + 2(21+k−µ

− 1)z + 1
)
, ν ≤ k.

(4.3)
Since in the first k ≤ ν − 1 iterations of the scheme we use the masks of the
B-splines of degree k, while we use the GP mask q(n,n+k−µ) for k ≥ ν, we
expect to generate refinable functions with support not greater than [0, n+1]
and smoothness n− 1.
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Theorem 4.1. Any S{a(n,m)} ∈ A is Cn−1. Moreover, the associated basic

limit function φ(n,m) belongs to Cn−1(R) and has supp φ(n,m) =
[
0, R(n,m)(ν)

]

where

R(n,m)(ν) =





(n− 1− ν)2m−ν + (m+ 2), 0 ≤ m ≤ ν − 1,

n+ 1, m ≥ ν.

(4.4)

Proof. First of all we prove the convergence of the nonstationary scheme with
symbols

b(k)(z) =

{
(1 + z), 0 ≤ k ≤ ν − 1,

1

21+k−µ

(
z2 + 2(21+k−µ

− 1)z + 1
)
, ν ≤ k.

(4.5)

Observe that b(∞)(z) := limk→∞ b(k)(z) = 1
2
(1 + z)2 is the symbol of the hat

function. Since

‖S{b(k)} − S{b(∞)}‖∞ =

{
1
2
, 0 ≤ k ≤ ν − 1,

1− 2−k−µ

, ν ≤ k,

and
∞∑

k=ν

(
1− 2−k−µ

)
<∞,

(cf. [4]), it follows S{b(k)} ≈ S{b(∞)}, thus S{b(k)} is C0 (cf. Proposition 1).
Now, observe that

a(n,k)(z) =
1

2n−1
(1 + z)n−1b(k)(z), k ≥ ν; (4.6)

thus, the smoothness result follows from Proposition 1.
As for the support, one has [7]

supp φ(n,m) =

[
∞∑

k=m

2m−k−1Lk,

∞∑

k=m

2m−k−1Rk

]
,

where [Lk, Rk] = supp a(n,k).

Since Lk = 0, k ≥ 0, and Rk =

{
k + 1 for 0 ≤ k ≤ ν − 1
n+ 1 for ν ≤ k

, the claim

follows from straightforward computations.
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Figure 2: Left: Nonstationary refinable functions φ(3,0) for ν = 1 and µ = 1.5
(solid line) in comparison with the characteristic function (dashed line) and
the cubic spline (dotted line). Right: φ(3,0) (solid line), φ(3,1) (dashed line),
φ(3,2) (dash-dotted line) for ν = 3 and µ = 1.5.

We remark that every φ(n,m) belongs to Cn−1(R), but just the refinable
functions with 0 ≤ m ≤ ν − 1 have support smaller than [0, n + 1]. In
particular, one has

suppφ(n,0) =
[
0, n

2
+ 1

]
, ν = 1,

suppφ(n,m) = [0, (m+ 2)− 2m−n] , ν = n, 0 ≤ m ≤ n− 1.

As an example, in the table below we give the values of R(3,m)(ν). Some
refinable functions φ(3,m), belonging to C2(R), are displayed in Fig. 2.

R(3,0)(ν) R(3,1)(ν) R(3,2)(ν) R(3,m)(ν), m ≥ 3

ν = 1 5/2 4 4 4
ν = 2 2 3 4 4
ν = 3 15/8 11/4 7/2 4

Total positivity and central symmetry of the nonstationary refinable func-
tions here constructed can be deduced by the associated nonstationary cas-
cade algorithm, as the following theorem shows.

Theorem 4.2. Any φ(n,m), generated by a nonstationary subdivision sche-

me in A, is centrally symmetric, i.e. φ(n,m)(x) = φ(n,m)(R(n,m)(ν) − x), and
totally positive.
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Proof. Since any nonstationary subdivision scheme in A is convergent, the
corresponding nonstationary cascade algorithm is convergent as well (cf. Th.
1). By choosing the B-splines Bn of degree n as starting functions, we get
the following approximation of the basic limit function:

hm,k =
∑

α∈Z

s(n,m,k)
α Bn(2

k · −α), lim
k→∞

hm,k = φ(n,m),

where s(n,m,k) := Sa(n,m+k−1) · · ·Sa(n,m+1) Sa(n,m) δ0.

Recalling that any hm,0 is centrally symmetric and totally positive and
any mask a(n,k) is a centrally symmetric and totally positive sequence, by
induction any hm,k is centrally symmetric and totally positive as well, and
so is any φ(n,m).

In order to use the functions φ(n,m) in applications, we need to study the
properties of the system of integer translates

Φ(n,m) := {φ(n,m)(· − α), α ∈ Z}, m ≥ 0, n ≥ 2. (4.7)

Proposition 4.3. For any n ≥ 2 and m ≥ 0, the system Φ(n,m) forms a

linearly independent system that is a partition of unity.

Proof. For any n ≥ 2 andm ≥ 0 the Fourier transform φ̂(n,m)(ω) =
∏

k≥m a(n,k)(ei
ω

2j )

has no complex periodic zeros. Thus, the system Φ(n,m) is linearly indepen-
dent [13]. Partition of unity follows from the properties

∑
α∈Z a

(n,k)
α−2β = 1,

α = 0, 1.

Remark. The same reasonings as in Proposition 2 and Theorems 3-4 can
be applied to the subdivision scheme (2.5) generating the up-function. Thus,
the up-function is totally positive and the system of its integer translates is
linearly independent, and forms a partition of unity.

The following theorem concerns the reproduction of linear functions that
is of interest in the construction of an approximation operator of Bernstein-
Schoenberg type.

Theorem 4.4. For n ≥ 3 and m > 0, there exist real numbers ξ
(n,m)
α , α ∈ Z,

such that

x =
∑

α∈Z

ξ(n,m)
α φ(n,m)(x− α), x ∈ R. (4.8)
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Proof. From the factorization (4.5-4.6) it follows that for n ≥ 3 and m > 0
any symbols a(n,k) has a factor (1 + z)2. This means that at any level k, the
k-level subdivision operator Sa(n,k) preserves linear functions and so does the
basic limit function φ(n,m) (cf. [14]).

Observe that the r.h.s. of (4.8) is nothing other than the Bernstein-
Schoenberg type operator

S(n,m)f =
∑

α∈Z

f(ξ(n,m)
α )φ(n,m)(· − α) (4.9)

applied to f(x) = x. From partition of unity and (4.8) it turns out that for
n ≥ 3 and m > 0 S(n,m) reproduces linear functions.

5 Bernstein-like Bases

We are interested in constructing totally positive bases on the interval [0,1]
for refinable spaces. We observe that bases obtained by a simple trunca-
tion may exhibit instabilities near the endpoints. To avoid this problem, we
will construct particular bases on [0, 1] exhibiting the main properties of the
Bernstein polynomial bases, i.e. central symmetry, total positivity, and the
presence of zeros at the endpoints. To this end, we introduce the following
definition.

Definition 3. A Bernstein-like basis W = {wα, 0 ≤ α ≤ N} is a totally

positive basis of [0, 1] that is centrally symmetric, is a partition of unity and

satisfies a zero property of order N at the endpoints, i.e.





w0(0) = 1, w
(γ)
α (0) = 0, 1 ≤ α ≤ N, 0 ≤ γ ≤ α− 1,

wN(1) = 1, w
(γ)
N−α(1) = 0, 1 ≤ α ≤ N, 0 ≤ γ ≤ α− 1.

(5.1)

In order to generate a basis satisfying conditions (5.1) starting from a
given totally positive basis, we can follow a reasoning line analogous to that
ones given in [1, 12].

Let us consider the totally positive basis Σ(n,h), formed by the integer
translates of a given stationary GP refinable function σ(n,h). Let Σ

(n,h)
[0,1] :=
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Σ(n,h)|[0,1] and let H(n,h) be the totally positive matrix constructed by the
algorithm described in [12]. This procedure yields the basis

U (n,h) = H−1
(n,h)Σ

(n,h)
[0,1] (5.2)

whose properties are given in the following theorem.

Theorem 5.1. The basis U (n,h) = {u
(n,h)
0 , . . . , u

(n,h)
n } is a Bernstein-like ba-

sis. Moreover, for n ≥ 3, U (n,h) reproduces linear functions.

We observe that when n = h (B-spline case), U (n,h) reduces to the poly-
nomial Bernstein basis of degree n. In Fig. 3 (left) the Bernstein-like basis
U (3,4) is displayed.

Other Bernstein-like bases can be obtained by applying the same proce-
dure to Φ

(n,m)
[0,1] := Φ(n,m)|[0,1]. In more detail, let

ψ(n,m)(x) := φ(n,m)

(
x+

1

2
(
⌈
R(n,m)(ν)

⌉
−R(n,m)(ν))

)

and denote by Ψ(n,m) the basis of the integer translates of ψ(n,m). The basis

W (n,m) = K−1
(n,m)Φ

(n,m)
[0,1] ,

where Ψ
(n,m)
[0,1] := Ψ(n,m)|[0,1] and K(n,m) is the matrix constructed by applying

the quoted algorithm to Ψ
(n,m)
[0,1] , is a Bernstein-like basis when |supp φ(n,m)|

∈ N. In the case when |supp φ(n,m)| is fractional, W (n,m) still has a behavior
analogous to that one of a Bernstein-like basis, as the example in Fig. 3
(right) shows.

6 Conclusion

We have constructed a class of centrally symmetric, totally positive refin-
able functions that are obtained by a suitable use of certain nonstationary
subdivision schemes. The integer translates of these functions form a linear
independent system that is a partition of unity and reproduces linear func-
tions. The main feature of these functions is in that they have a high spatial
localization; in particular, these functions achieve a prescribed smoothness
having a smaller support than other totally positive refinable functions, such
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Figure 3: Bernstein-like basis U (3,4) (left) and W (3,0) for ν = 1 and µ = 1.5
(right).

as the B-splines or the functions introduced in [4]. All these properties make
them suitable for the reconstruction of curves. Moreover, the correspond-
ing Bernstein-like bases can be used for the construction of quasi-interpolant
operators.
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