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Refinement masks of Hurwitz type in the

cardinal interpolation problem

F. PITOLLI

RIASSUNTO: Si studiano le proprieta di una particolare classe di funzioni di raf-
finamento simmetriche, a supporto compatto e totalmente positive. Si dimostra che
tali funzioni di raffinamento possono essere usate nel problema dell’interpolazione car-
dinale generalizzata poiché esiste un unico valore eccezionale che viene qui calcolato
esattamente. Vengono presentati alcuni esempi numerici riguardanti l’interpolazione e
la costruzione di wavelets semi-ortogonali tramite tali funzioni di raffinamento.

ABSTRACT: We analyse the properties of a particular class of symmetric, compactly
supported, totally positive refinable functions. We show that these refinable functions
can be used in the generalized cardinal interpolation problem for which there ezists
a unique exceptional value which can be evaluated exactly. Some numerical examples
concerning interpolation and construction of semi-orthogonal wavelets by means of these
refinable functions are displayed.

1 — Cardinal interpolation by refinable functions

In relation with the cardinal splines M,,(z), of order n, SCHOENBERG
proposed [12], [13] the cardinal interpolation problem consisting of seeking
a function S € span{M, (- — k)}, i.e.

(1.1) S(x) =Y bMy(z—k),

keZ
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satisfying the interpolation conditions
(1.1") Sla+j)=y;, jeZ

where y = {y,};ez,y; € IR, is a given sequence and 0 < o < 1.

This problem was solved under various conditions on y; in particular,
it was proved that, if y € I*(Z), the cardinal interpolation problem has a
unique solution for each « € [0, 1) different from an exceptional value «p.

The value of oy depends on the order of the cardinal splines in con-
sideration; in particular, ay = 0 for the cardinal splines of odd order and
Qg = % for the cardinal splines of even order.

The observation that the cardinal splines are refinable functions [1],
has suggested the following Generalized Cardinal Interpolation Problem
(GCIP) [7].

Let ¢ be a solution (called a refinable function) of the refinement
equation

(1.2) p(r) =) a;p(2z—j), zeR

JEZ

where the mask a = {a;};cz satisfies the condition

(1.3) Z (i1 = Z as; =1,

JEZ JEZ

and let y = {y;} € I'(Z) be a sequence of real data. We seck a function
F € span{yp(- — k)}, i.e.

(1.4) F(z) =3 aplz—k),

kez
interpolating the data y; at the points a+ j, with « fixed in [0, 1), that is
(1.5) Fla+j)=vy;, JjeZ.
The property of total positivity of the B-splines plays a crucial role in

interpolation problems, thus it is important to construct refinable func-
tions enjoying the same property.
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Let us introduce the discrete Fourier transform A(z) of the mask,
also termed the symbol of the sequence {a;};cz:

(1.6) Alz) =) a;2), z=¢"v.

jezZ

In the B-splines case, which corresponds to the mask

1 (n )
aj:2n_1 (j) 7=0,...,n

a; =0 otherwise

(n € IN fixed), the symbol is a left-half plane stable polynomial (Hurwitz
polynomial) having the form:

B, (2) (z+1)", z=¢€".

- 2n—1

In [4] it has been proved that if the symbol is a Hurwitz polynomial,
the corresponding ¢ is a ripplet, that is, ¢ is totally positive:
det  p(x; —i;) >0 Vo, <...<z,, 11 <...<i,
(17) l,j=1,...,r
z; € R, ij Sy/4

with strict positivity holding if and only if i, < x; < @;+n—1,1=1,... 7.
Moreover, in this case, ¢ enjoys the variation diminishing property

(1.8) S (e (-—5)) <8 (a00),
where S~ (b) denotes the number of (strict) sign changes in the sequence
b = {bj}jez, and
(Ale); = (A'7e)j0 — (A e);
and (A%); = ¢;, as usual.
In [13, Lecture 4] Schoenberg proved that the solution of the cardi-

nal interpolation problem exists and is unique provided that the Euler-
Frobenius polynomial

II(z;a) = Z M, (a+ 5)2’

jez

does not vanish on the unit circle |z| = 1.
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The proof of Schoenberg is mainly based on the total positivity of
the B-splines. Because the ¢ we are considering are ripplets, the line
of reasoning developed in [13] can be extended to show that also the
solution of the generalized cardinal interpolation problem exists and is
unique provided that the Euler-Frobenius polynomial

(1.9) (za) =Y pla+j)z

JEZ

does not vanish on the unit circle |z| = 1.

In Section 2 we analyze the properties of a particular class of symmet-
ric refinable functions totally positive and compactly supported on [0, n].

In Section 3 we study its behaviour in the cardinal interpolation show-
ing that there exists a unique value « such that II(z; ) = 0 on |z| = 1.
We display also some numerical examples.

In Section 4 we construct the semi-orthogonal wavelets, here called
pre-wavelets, associated with these refinable functions.

2 — A particular class of symmetric masks

In [5] the following class of positive symmetric masks compactly sup-
ported on [0,n],n > 3, depending on the real parameter h > n — 2, has
been introduced:

1 n n—2
(h) _ -n .
(21)  aj, = o K]) 42 1)<j B 1)] , 7J=0,1,...,n

(assume (}) = 0 for i < 0 or ¢ > ). The masks (2.1) satisfy also the
conditions (1.3).

Note that any sequence a®™ = {a§h,2} is bell-shaped, because it sat-
isfies the relations

(22) a’;flrz < ag'}}k)l,na J=0,1,..., [n/Q] :

The function ¢y, ,,, solution to the refinement equation

(2.3) enn(z) = a2z — 5)
j=0
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is positive, compactly supported on [0, n], centrally symmetric, that is
(24) @h,n(l') = (Ph,n(n - :E)a Vz € (Oan) )

and such that

(2.5) > onnl—j)=1, VzeR

JEZ

(see [11, Corollary 5.1]). For the sake of simplicity, in the following we
shall use symmetric instead of centrally symmetric.
Let us denote by ® the set

O :={ppn:n>3,h>n—-2neclN heclR}.

The symbol of the masks (2.1) has the form

(2.6)  Apa(2) = al"ed = (2 + 1)"*22%[22 + 20282 1)z + 1]
=0
from which it immediately follows that, for h > n—2, A, ,(z) is a Hurwitz
polynomial, thus ¢, is a ripplet and (1.7) and (1.8) hold. Moreover,
©nn € C"3 (see [4, Theorem 4.2]).
As a consequence of (2.2) and (1.8), ¢y, is bell-shaped, in the sense
that it is increasing on [0,n/2) and decreasing on (n/2,n|.

REMARK. We observe that choosing h = n — 1 in (2.1), we obtain
the mask of the B-spline of order n.

Let us write the symbol A4, ,(z) as the product of B;(z), the sym-
bol associated to the B-spline of order 1, and Aj_1,-1(%), the symbol
associated to pp_1 ,—1, that is

(2.7) Apn(2) = Bl(z)%Ah_l,n_l(z).

Denoting by f (w) the Fourier transform of a function f(x), i.e.

fw = [ f@erda,
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and taking the Fourier transform of the refinement equation (2.3), we have

R 1 R w
QO}L,n(w) - _Ah,n<z)goh,n<_> =
2 2
(2.8) 1 1 " _
= 5B A1 (Dona(5 ), 2=
from which it follows
(2.9) @h,n(w) = J\/i(w)@hq,nﬂ(w) .

In [4, proof of Theorem 4.2] it has been shown that the convolution
between a refinable function corresponding to a symbol of Hurwitz type
and the B-spline M, is a refinable function corresponding to a symbol of
Hurwitz type, too.

It is worth noting that (2.9) gives us an additional information. In
fact, we have the following proposition, which can be proved by a recursive
procedure.

ProOPOSITION 2.1. If o € ®, then also the convolution ¢ x M; € ®;
i particular,

(2.10) QOh,n(l‘) = (@h—z,n—z * Ml)(w) .

From (2.6) and some results in [4] it follows that the effect of the con-
volution with M; is to increase the smoothness of the refinable functions.
This is also true in the case of the well known Daubechies refinable func-
tions of compact support [3] whose symbol is not a Hurwitz polynomial.

From (2.10) it is easy to prove, by induction, the following corollary.

COROLLARY 2.2. The derivatives of order m of ¢n..(x) can be
expressed as

211) @)=Y (1) (T) hmnml(@—3),  m<n-—3.
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3 — The exceptional value for the GCIP

Here we are interested in finding the value of « for which the Euler-
Frobenius polynomial II(z; «) vanishes on |z| = 1, when ¢ € ®.

Due to the compact support of ¢, II(z;«) is a polynomial of de-
gree n — 1.

We recall that when the sequence of the coefficients of a polynomial
is totally positive, the polynomial has only real negative zeros [6], thus
the exceptional values of the generalized cardinal interpolation problem
are the roots of the equation

n—1

(3.1) I(-L;a) =) pla+j)(-1) =0.

J=0

It is worth noting that such a value of o depends only on the refinable
function ¢. In [7] we have shown that in the case n = 3 the exceptional
value is unique and its value is 0 if and only if the refinable functions are
symmetric. In the case n > 3 the following theorem holds.

THEOREM 3.1. If ¢ is a totally positive, compactly supported, sym-
metric refinable function whose support is [0,n|, then the values ag = 0
for n odd and oy = % for n even are exceptional values with respect to
the generalized cardinal interpolation problem.

Proor. Consider the case n odd.
Due to (3.1), we are interested in finding the roots of the equation

n—1

(3.2) > ela+j)(-1) =0.

=0

For o = 0 (3.2) reduces to

H(-1,0) = 3 pli)(~1)" = p(0)+

(n—1)/2 n—1

+ Y e+ Y (-1

j=1 j=(n—1)/2+1
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Observing that the first term is zero and using the symmetry property
o(r) = @(n —z), Vo € R, in the last sum, we obtain

(n—1)/2 (n—1)/2

M-L0)= > @l + > e()(=1)" =0.

The case n even can be proved in a similar way. O

REMARK. This result generalizes the analogous one concerning the
L-splines [9].

In the proof of Theorem 3.1 we used only the symmetry of ¢ on the
integers. On the other hand, the symmetry on the integers implies that
© is symmetric for any = € IR, as proved in the following theorem.

THEOREM 3.2. The conditions
(3.3) o(t) =pn—1), VielN
hold if and only if ¢ is symmetric Vx € R.

PROOF. If ¢ is symmetric, then (3.3) holds. Suppose now that (3.3)
holds.

Using the refinement equation (1.2) with j € [0,n], and (3.3), we
obtain

> ajp2i—j) = an_jp(2i—j), VieN
j=0 =0

from which it follows that a; = a,_;, which implies that ¢ is symmetric
Vz e IR (see [11, p. 207]). 0

From the previous theorems we conjecture that the only refinable
functions having exceptional values

1
= 3 for n even

{a0:0 for n odd

are the symmetric ones. For instance, in fig. 1 we display the zeros [; («),
l2(a), l3(cr) of the Euler-Frobenius polynomial in a non-symmetric case,



9] Refinement masks of Hurwitz type in the etc. 9

0.2 0.4 0.6 0.8 a 1
Q, A(@)
-1
21
()

41

6|

8L )\3(06)

Fig. 1. — Zeros of the Euler-Frobenius polynomial in a non-symmetric case: ag = %,
11 _ 19 _ 13 1

a1 = 57,02 = 57,03 = 53, a4 = 3-

1

corresponding to the mask ay = %,al = %,aQ = %,ag = £,a4 =3

whose symbol is still a Hurwitz polynomial. The graph shows that, in
this case, the unique exceptional value is near 0.6.

On the other hand, total positivity enables us to prove that the ex-
ceptional value is unique.

First of all we need the following results.

LEMMA 3.3. Lett € IR be fired. Ift < 0, the Fuler-Frobenius
polynomial I1(t; ) has exactly one simple zero for any a € [0,1).

PROOF. It is easy to prove that
(3.4) H(t;a + k) =t *II(t; a) .
For a =0 and k£ =1 one has
(3.5) I(t; 1) = t'TI(t;0),

thus, if t < 0, II(¢; 1)I1(¢;0) < 0.
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Now, suppose that II(¢; ) has 21 + 1, [ > 0, sign changes in [0, 1).
Then, from (3.4) it follows that g(x) = II(t;z), = € IR, has at least
(20 4+ 1)L sign changes in the interval [0, L]. On the other hand, since ¢
is compactly supported, we have

n

g(@) =I(t;z) =D @+ )t/ = > ol +j)t’

JEZ j=—L

and, due to the total positivity of ¢,
Z(g9(2),[0,L)) <n+L+1,

where Z denotes the number of zeros of g(x) counting their multiplicities.
Thus, we have the inequality (2 + 1)L < n + L + 1 that is false for L
large. It follows that II(t; ) has a unique simple zero for a € [0,1). [

Let us label the zeros of II(t;a) as A(a) > ... > A,_1(a). Now,
following the line of reasoning outlined in [9] and [14] in the case of £-
splines, we can prove the following lemma.

LEMMA 3.4. The functions A\i(«), ..., An_1(a) are continuous and
strictly decreasing for o € [0,1), and I1(¢;0) has exactly n — 1 negative
zeros. Moreover,

lim A\j(o) = lim A\yq(a) i=1,...,n—2

a—1— a—0T

and
lim A\(a) =0, lim A, ;(a) =—00.
a—0+ a—1—
PROOF. The continuity of \;(a),i = 1,...,n — 1, is an immediate

consequence of the continuity of p(j + «) (recall (1.9)).
Suppose that there exist two different values of a € [0,1), say @
and «, such that

Ai(@) = X;(@)

for some indices 7 and j (which can be also equal) and let us reach a
contradiction.
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In this case II(\;(@); @) = II(\;(a@); &) = 0 and the function g(a) =
I1(t; ) with t=\; (@) =\;(&) has two zeros, which contradicts Lemma 3.3.
Thus, A\ (@), ..., A\,_1(«) are strictly monotonous functions of a € [0, 1).

Let us denote by A(0) and A(1) the sets of the values

A (0F) = ali%l+ (o), A (17) = alir{lﬁ M), p=1,...,n—1,
respectively.

Due to Lemma 3.3, all the values in each set are distinct, that is
Au(07) #£ A, (07) and A, (17) # A, (17) for all p # v. In particular, each
set can contain the values 0 and —oo only once. Thus, the two sets A(0)
and A(1) have at least n — 2 distinct elements, whose values are finite.

It is easy to show, by direct evaluation, that the value 0 belongs to
A(0) and the value —oo belongs to A(1). Moreover, from (3.5), it follows
that the n — 2 zeros of II(¢; 1) and II(¢; 0) are equal, thus

A0) = {20 (07) = 0, A(0%), ..., A1 (01},

A1) ={007) =001, A 2(17) = X1 (07), N1 (1)},
and the claim follows. 0

As a consequence of the previous lemma, it easily follows:

THEOREM 3.5. Let ¢ € ® having support [0,n]. Then the unique
exceptional value ag € [0,1) with respect to the generalized cardinal in-
terpolation problem is

(3.6) .

ag == for n even.

{04020 for n  odd
2

The behaviour of the zeros of II(z; «) are displayed in fig. 2 in the
case n =3, h =4 and in fig. 3 in the case n =4, h = 5.

A procedure to construct the interpolating function F'(x) can be
found in [7]. Here this procedure has been used to construct the func-
tion F'(x) interpolating the following test functions:

) { 1 z€[-3.5,3.5 ) { sin (%:p) € [0,10]

0 otherwise B 0 otherwise
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0.2 0.4
-1
-5
-10
-15
Ay(@)

Fig. 2. — Zeros of the Euler-Frobenius polynomial corresponding to the choise n = 4
and h = 5 in the mask (2.1) (the values of A1(«) are very near to 0).

Fig. 3. —

Qg 0.2 0.4 0.6

0.8 a 1

-0.2

-0.4

-0.6

-0.8

A (a)

a 0.2 0.4 0.6

-20

-30

-35
M)

-40

Zeros of the Euler-Frobenius polynomial corresponding to the choise n = 3

and h =4 in the mask (2.1).
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H

0.8 r

0.6 r

0.4 r

0.2 r

g

Fig. 4. — Graphs of fi(z) and Fp 3(z) for a = %

-2 2 4 z 6

In fig. 4 the graphs of fi(x) and of the interpolating function Fj3(x),
belonging to span{yes(- — k)}, are displayed. We observe that the use
of a refinable function with a high value of h enables us to smooth the
oscillations due to the Gibbs phenomenon.

In fig. 5 the graphs of fo(x) and of the interpolating function Fs 4(x),
belonging to span{ps (- — k)}, are displayed. They differ slightly only
near the zeros of fy(x).

0.8
0.6
0.4

0.2

2 4 6 8 10 r 12

Fig. 5. — Graphs of fa(z) and F5 4(z) for o = 0.
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4 — Wavelets and dual bases

As a consequence of the fact that ¢, ,, is a ripplet, the integer trans-
lates of ¢y, ,(z) form a Riesz basis [5], thus the function

(41) wh’”(x) = Z(_l)j:uyi)l,n(ph,n(2m - ])
JEZ

where

(42) Mgﬁz = /RQOh,n(eT)SOh,n(z% +])dflf, j c Z

is a pre-wavelet, that is ¥, ,(2"z — 1) is orthogonal to ¢y, ,,(2°z — m) for
all m,l,r,s € Z, with r # s [10].

Moreover, v, ,, form a Riesz basis too and can be used in the wavelet
decompositon.

REMARK. For h = n — 1, 9, is the same as the semi-orthogonal
wavelet constructed in [2].

To give an idea of the behaviour of the pre-wavelets, the graph of
5 4(x) is displayed in fig. 6.

It is known that in the wavelet decomposition one needs also the dual
bases of both the refinable functions and the wavelets. The dual bases of
©nn and 1y, , have been constructed in [8], following the procedure given
in [1].

0.1}
0.05 A
-3 ) -1 1 \\OZ 3z
5]

-0.1¢

4

Fig. 6. — Graph of 95 4(x).
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