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Abstract
This is a survey on recent developments of the theory of one-parameter semigroups and

evolution equations with special emphasis on functional calculus and kernel estimates. Also
other topics as asymptotic behavior for large time and holomorphic semigroups are discussed.
As main application we consider elliptic operators with various boundary conditions.
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Introduction

The theory of one-parameter semigroups provides a framework and tools to solve evolu-
tionary problems. It is impossible to give an account of this rich and most active field.
In this chapter we rather try to present a survey on a particular subject, namely functional
calculus, maximal regularity and kernel estimates which, in our eyes, has seen a most
spectacular development, and which, so far, is not presented in book form. We comment
on these three subjects:

1. Functional calculus (Section 4). If A is a self-adjoint operator, one can define f (A)

for all bounded complex-valued measurable functions defined on the spectrum of A. It was
McIntosh who initiated and developed a theory of functional calculus for a less restricted
large class of operators, namely sectorial operators; i.e., operators whose spectrum is in-
cluded in a sector and whose resolvent satisfies a certain estimate. Negative generators
of bounded holomorphic semigroups are sectorial operators and are our main subject of
investigation. And indeed, for these operators f (A) can be defined for a large class of
holomorphic functions defined on a sector containing the spectrum. Taking f (z) = e−tz

leads to the semigroup e−tA, the function f (z) = zα to the fractional power of such an
operator A. One important reason to study functional calculus is the Dore–Venni theorem.
In its hypotheses functional calculus plays a role; the conclusion is the invertibility of the
sum of two operators A and B . Thus, the Dore–Venni theorem asserts that the equation

Ax +Bx = y

has a unique solution x ∈D(A)∩D(B). To say that the solution is at the same time in both
domains can be rephrased by saying that the solution has “maximal regularity”, a crucial
property in many circumstances.

2. Form methods (Section 5). On Hilbert space the functional calculus behaves particu-
larly well as we show in Sections 4 and 5. Most interesting is the close connection with
form methods. Basically, the following is true: an operator is associated with a form if
and only if it has a bounded H∞-calculus. Form methods, based on the fundamental Lax–
Milgram lemma, allow a most efficient treatment of elliptic and parabolic problems as we
show later.

3. Maximal regularity and Fourier transform (Section 6). The following particular prob-
lem of maximal regularity is important for solving nonlinear equations: The genera-
tor A of a semigroup T is said to have property (MR) if T ∗ f ∈ W 1,2((0,1);X) for
all f ∈ L2((0,1);X). On Hilbert spaces every generator of a holomorphic semigroup
has (MR); but a striking result of Kalton–Lancien asserts that this fact characterizes
Hilbert spaces (among a large class of Banach spaces). On the other hand, in recent
years it has been understood which role “unconditional properties” play for operator-
valued Fourier transform and Cauchy problems. So one may characterize property (MR)

by R-boundedness, a property defining “unconditional boundedness” of sets of operators.
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4. Kernel estimates (Section 7). Gaussian estimates for the kernels of parabolic equations
have been investigated for many years. It is most interesting in its own right that the solu-
tions of a parabolic equation with measurable coefficients are very close to the Gaussian
semigroup. But Gaussian estimates have also striking consequences for the underlying
semigroup. For example, we show that they do imply boundedness of the H∞-calculus.

5. Elliptic operators (Section 8). The theory presented here can be applied to elliptic op-
erators with measurable coefficients to which Section 8 is devoted. We will explain Kato’s
square root problem, the most difficult question of coincidence of form domain and the
domain of the square root, which has been solved recently by Auscher, Hofmann, Lacey,
McIntosh and Tchamitchian.

We start the chapter by putting together some basic properties of semigroups which
are particularly useful in the sequel. Special attention is given to holomorphic semigroups
(Section 2) and to the theory of asymptotic behavior (Section 3). As prototype example
in this account serve the Laplacian with Dirichlet and Neumann boundary conditions:
On spaces of continuous functions this operator will be considered in Section 2, later its
Lp-properties are established. Concerning the results on asymptotic behavior we concen-
trate on those which can be applied to parabolic equations in Section 8.

Most of the results are presented without proof, referring to the literature. Frequently,
only particular cases which are easy to formulate are presented; and in a few cases we give
proofs. Some of them are new, not very well known or particularly elegant. The article
presents a special choice, guided by personal taste, even in this narrow subject. We hope
that the numerous references allow reader to go beyond that choice and that the list of
monographs at the end helps them to view the subject in a broader context.

1. Semigroups

In this introductory section we present semigroups from three different points of view.
We mention few properties but refer to the various text books concerning the theory.

1.1. The algebraic approach

Let X be a complex Banach space, let C(R+,X) be the space of all continuous functions
defined on R+ := [0,∞) with values in X. A C0-semigroup is a mapping T : R+→ L(X)

such that
(a) T (·)x ∈C(R+,X) for all x ∈X;
(b) T (0)= I ;
(c) T (s + t)= T (s)T (t), s, t ∈R+.

Given a C0-semigroup T on X, one defines the generator A of T as an unbounded operator
on X by

Ax = lim
t↓0

T (t)x − x

t
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with domain D(A) := {x ∈X: limt↓0
T (t)x−x

t
exists}. Then D(A) is dense in X and A is

closed and linear. In other words, A is the derivative of T in 0 (in the strong sense) and for
this reason one also calls A the infinitesimal generator of T .

The second approach involves the Cauchy problem.

1.2. The Cauchy problem

Let A be a closed linear operator on X. Let J ⊂ R be an interval. A mild solution of the
differential equation

u̇(t)=Au(t), t ∈ J, (1.1)

is a function u(t) ∈C(J,X) such that
∫ t

s
u(r)dr ∈D(A) for all s, t ∈ J and A

∫ t

s
u(r)dr =

u(t) − u(s). A classical solution is a function u ∈ C1(J,X) such that u(t) ∈ D(A) and
u̇(t)=Au(t) for all t ∈ J . Since A is closed, a mild solution u is a classical solution if and
only if u ∈ C1(J,X).

THEOREM [[ABHN01], 3.1.12]. Let J = [0,∞). The following assertions are equivalent:
(i) A generates a C0-semigroup T ;

(ii) for all x ∈X, there exists a unique mild solution u of (1.1) satisfying u(0)= x .
In that case u(t)= T (t)x , t � 0.

The theorem implies in particular that the generator A determines uniquely the semi-
group. Here is the third approach.

1.3. Semigroups and Laplace transforms

Let T be a C0-semigroup with generator A. Then the growth bound

ω(T ) := inf
{
ω ∈R: ∃M such that

∥∥T (t)
∥∥� Meωt for all t � 0

}
satisfies −∞� ω(T ) <∞, and if λ ∈C, Reλ > ω(T ), then λ is in the resolvent set ρ(A)

of A and

R(λ,A)x =
∫ ∞

0
e−λtT (t)x dt := lim

τ→∞

∫ τ

0
e−λtT (t)x dt

for all x ∈X, where R(λ,A)= (λ−A)−1.

THEOREM [[ABHN01], Theorem 3.1.7, p. 113]. Let T : R+→L(X) be strongly continu-
ous. Let A be an operator on X, λ0 ∈R such that (λ0,∞)⊂ ρ(A) and

R(λ,A)x =
∫ ∞

0
e−λtT (t)x dt, λ > λ0,
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for all x ∈X. Then T is a C0-semigroup and A its generator.

Thus generators of C0-semigroups are precisely those operators whose resolvent is a
Laplace transform. Laplace transform techniques play an important role in semigroup the-
ory (see [[ABHN01]] for a systematic theory).

1.4. More general C0-semigroups

In order to talk about Dirichlet boundary conditions we need more general semigroups (cf.
Section 2.5). A strongly continuous function T : (0,∞)→ L(X) is called a (nondegenerate
locally bounded ) semigroup if

(a) T (t)T (s)= T (t + s), t, s > 0;
(b) sup0<t�1 ‖T (t)‖<∞;
(c) T (t)x = 0 for all t > 0 implies x = 0.

As a consequence ω(T ) <∞ and there exists a unique operator A such that (ω(T ),∞)⊂
ρ(A) and R(λ,A)x = ∫∞0 e−λtT (t)x dt for all x ∈X and λ > ω(T ). We call A the gener-
ator of T (see [[ABHN01], 3.2]). Then T is a C0-semigroup if and only if D(A) =X. If
X is reflexive, then this is automatically true.

1.5. The inhomogeneous Cauchy problem

If A generates a C0-semigroup T , then also the inhomogeneous Cauchy problem{
u̇(t)=Au(t)+ f (t), t ∈ [0, τ ],
u(0)= x

(1.2)

is well posed. More precisely, let x ∈ X, f ∈ L1((0, τ );X). A mild solution of (1.2) is a
continuous function u : [0, τ ]→X such that

∫ t

0 u(s)ds ∈D(A) and

u(t)− x =A

∫ t

0
u(s)ds +

∫ t

0
f (s)ds

for all t ∈ [0, τ ]. Define T ∗ f by T ∗ f (t)= ∫ t

0 T (t − s)f (s)ds.

PROPOSITION. The function u given by u(t)= T (t)x + T ∗ f (t) is the unique mild solu-
tion of (1.2).

1.5.1. Classical solutions. Thus, in the particular case where x = 0, the mild solution
of (1.2) is u = T ∗ f . It is very rare that this u is a classical solution for all f . Let T be
a C0-semigroup on X with generator A.

THEOREM (Baillon; see [EG92]). Assume that X is reflexive or X = L1 (or more generally
that c0 �⊂X). If for all f ∈ C([0, τ ];X) one has T ∗f ∈ C1([0, τ ],X), then A is bounded.
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In Section 5 we will devote much attention to the question when

T ∗ f ∈W 1,p((0, τ );X) for all f ∈ Lp
(
(0, τ );X).

2. Holomorphic semigroups

A semigroup T : (0,∞)→ X (in the sense of Section 1.4) is called holomorphic if there
exists θ ∈ (0,π/2] such that T has a holomorphic extension T :Σθ → L(X) which is
bounded on {z ∈ Σθ : |z| � 1}. In that case, this holomorphic extension is unique and
satisfies T (z1 + z2)= T (z1)T (z2) for all z1, z2 ∈Σθ . If T is a C0-semigroup, then

lim
z→0
z∈Σθ

T (z)x = x

for all x ∈X, and we call T a holomorphic C0-semigroup. If the extension T is bounded
on Σθ , we call T a bounded holomorphic semigroup. Thus, for this property, it does not
suffice that T is bounded on [0,∞). Take for example, T (t)= eit on X =C.

2.1. Characterization of bounded holomorphic semigroups

Let A be an operator on X. The following assertions are equivalent:
(i) A generates a bounded holomorphic semigroup T ;

(ii) one has λ ∈ ρ(A) whenever Reλ > 0 and supReλ>0 ‖λR(λ,A)‖<∞;
(iii) there exists α ∈ (0,π/2) such that e±iαA generates a bounded semigroup.

In that case (T (e±iαt))t�0 is the semigroup generated by e±iαA. Moreover, T is a
C0-semigroup if and only if D(A) is dense. This is automatic whenever X is reflexive.

2.2. Characterization of holomorphic semigroups

An operator A generates a holomorphic semigroup T if and only if there exists ω such that
A−ω generates a bounded holomorphic semigroup S. In that case T (t)= eωtS(t), t � 0.

2.3. Boundary groups

Let A be the generator of a C0-semigroup T having a holomorphic extension to the
half-plane C+ = {λ ∈ C: Reλ > 0}. Then iA generates a C0-group U if and only if
supRez>0,|z|�1 ‖T (z)‖<∞.

In that case we call U the boundary group of T and write U(s)=: T (is), s ∈R.
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2.4. The Gaussian semigroup

Consider the Gaussian semigroup G defined on L1 +L∞ := L1(Rn)+L∞(Rn) by

(
G(z)f

)
(x)= (4πz)−n/2

∫
Rn

f (y)e−(x−y)2/4z dy (2.1)

for all x ∈ Rn, f ∈ L1 + L∞, Re z > 0. Then G is a holomorphic semigroup which is
bounded on Σθ for each 0 < θ < π/2. The generator �1+∞ of G is given by

D(�1+∞)= {f ∈ L1 +L∞: �f ∈ L1 +L∞
}
,

�1+∞f =�f in D
(
Rn
)′
.

Let E be one of the spaces Lp(Rn), 1 � p � ∞, Cb(Rn) = {f ∈ L∞(Rn): f is
continuous};

BUC
(
Rn
) := {f ∈ Cb(Rn

)
: f is uniformly continuous

}
,

C0
(
Rn
) := {f ∈Cb(Rn

)
: lim|x|→∞

∣∣f (x)
∣∣= 0

}
,

which are all subspaces of L1 + L∞. Then the restriction G(t)|
E

defines a holomorphic
semigroup GE on E which is bounded on Σθ for each θ ∈ (0,π/2). Its generator is �E

given by

D(�E)= {f ∈E: �f ∈E},
�Ef =�f in D

(
Rn
)′
.

On E = Lp(Rn), 1 � p <∞, BUC(Rn) and C0(R
n) the semigroup GE is a C0-semi-

group.

2.5. The Dirichlet Laplacian

In this section we introduce the Laplacian with Dirichlet boundary conditions on the
space C(�Ω). It is a most basic example and we show in an elementary way that it gen-
erates a holomorphic semigroup.

Let Ω ⊂ Rn be open and bounded. We assume that Ω is Dirichlet regular; i.e., for all
ϕ ∈C(∂Ω) there exists a solution of

D(ϕ)

{
h ∈ C

(�Ω ), h|∂Ω = ϕ,

�h= 0 in D(Ω)′.

Such a solution is unique and automatically in C∞(Ω). If Ω has Lipschitz boundary, then
Ω is Dirichlet regular, but much milder geometric assumptions suffice (see, e.g., [[DL88],
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Chapter II]). We consider the operator A defined on C(�Ω) by

D(A)= {u ∈ C0(Ω): �u ∈C
(�Ω )},

Au=�u in D(Ω)′,

where C0(Ω) := {u ∈ C(�Ω): u|∂Ω = 0} and D(Ω)′ denotes the space of all distributions.
We call A the Dirichlet Laplacian on C(�Ω).

THEOREM. The operator A generates a bounded holomorphic semigroup T on C(�Ω).

For the proof we need the following form of the maximum principle.

MAXIMUM PRINCIPLE. Let v ∈C(�Ω) such that λv−�v = 0 in D(Ω)′, where Reλ > 0.
Then

sup
x∈∂Ω

∣∣v(x)∣∣= sup
x∈�Ω

∣∣v(x)∣∣.
PROOF. Suppose that ‖v‖L∞(Ω) > supx∈∂Ω |v(x)|. Let K := {x ∈Ω : |v(x)| = ‖v‖∞} and
vε = ρε ∗ v, where ρε is a mollifier. Then vε → v, �vε = ρε ∗�v → �v uniformly on
compact subsets of Ω as ε ↓ 0. Let Ω1 ⊂Ω be relatively compact such that K ⊂Ω1 and
�Ω1 ⊂Ω . Then, for small ε > 0, there exists xε ∈Ω1 such that |vε(xε)| = supx∈Ω1

|vε(x)|.
Then

Re
[
�vε(xε)vε(xε)

]
� 0. (2.2)

In fact, consider the function f (y)= Revε(y)vε(xε). Then f has a local maximum in xε .
Hence �f (xε) � 0. Let xεn → x0. Since vεn → v uniformly on Ω1, it follows that x0 ∈K .
From (2.2) we deduce that Re[v(x0)�v(x0)]� 0. Hence,

Reλ
∣∣v(x0)

∣∣2 � Reλ
∣∣v(x0)

∣∣2 −Re
[
v(x0)�v(x0)

]
= Re

[
v(x0)

(
λv(x0)−�v(x0)

)]= 0.

Since x0 ∈K , it follows that v = 0, contradicting the assumption. �

PROOF OF THE THEOREM. (a) Similarly as the Maximum principle above, one shows that
A is dissipative.

(b) We show that 0 ∈ ρ(A). Let f ∈ C(�Ω). Denote by f̃ the extension of f to Rn

by 0 and let v =E ∗ f̃ , where E is the Newtonian potential. Then v ∈ C(Rn) and �v = f

in D(Ω)′. Let ϕ = v|∂Ω and consider the solution h of the Dirichlet problem D(ϕ). Then
u= v − h ∈D(A) and Au= f . We have shown that A is surjective. Since the solution of
D(0) is unique, the operator A is injective. Since A is closed, it follows that 0 ∈ ρ(A).

(c) It follows from (a) and (b) that A is m-dissipative. In particular, λ ∈ ρ(A) whenever
Reλ > 0.
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(d) Denote by �0 the Laplacian on C0(R
n) which generates a bounded holomorphic

semigroup by 2.4. Thus there exists M � 0 such that∥∥λR(λ,�0)
∥∥� M if Reλ > 0.

We show that ‖λR(λ,A)‖ � 2M if Reλ > 0 which proves the Theorem. In fact, let
Reλ > 0, f ∈ C(�Ω), g = R(λ,A)f . Let g̃ =R(λ,�∞)f̃ . Then v = g− g̃ ∈ C(�Ω). More-
over, v|∂Ω =−g̃|∂Ω and λv −�v = 0 in D(Ω)′. By the Maximum principle, one has

sup
x∈�Ω

∣∣v(x)∣∣ = sup
x∈∂Ω

∣∣v(x)∣∣= sup
x∈∂Ω

∣∣g̃(x)∣∣
� M

|λ|
∥∥f̃ ∥∥

L∞(Rn)
= M

|λ|‖f ‖L∞(Ω).

Consequently,

‖g‖L∞(Ω) � ‖v‖L∞(Ω) +
∥∥g̃∥∥

L∞(Ω)

� 2
M

|λ| ‖f ‖L∞(Ω). �

FURTHER PROPERTIES. One has ω(T ) <∞ and T (t) is positive and compact for all
t > 0. The restriction T0 of T to C0(Ω) is a C0-semigroup.

REFERENCE. The elegant elementary argument above is due to Lumer and Paquet [LP79],
where it is given for more general elliptic operators. See also [[ABHN01], Chapter 6] for
a different presentation, and [LS99] for more general results.

2.6. The Neumann Laplacian on C(�Ω)

Let Ω ⊂ Rn be open. There is a natural realization �N
Ω of the Laplacian on L2(Ω) with

Neumann boundary conditions. The operator �N
Ω is self-adjoint and generates a bounded,

holomorphic, positive C0-semigroup (et�
N
Ω )t�0 on L2(Ω). We refer to Section 5.3.3 for

the precise definition.

THEOREM [FT95]. Let Ω be bounded with Lipschitz-boundary. Then C(�Ω) is in-
variant under the semigroup (et�

N
Ω )t�0 and the restriction is a bounded holomorphic

C0-semigroup T on C(�Ω).

The main point in the proof is to show invariance of C(�Ω) by the semigroup or the
resolvent. Holomorphy can be shown with the help of Gaussian estimates (Section 7.4.3).
We also mention that the semigroup T induced on C(�Ω) is compact, i.e., each T (t) is
compact for t > 0. This follows from ultracontractivity (Sections 7.3.3 and 7.3.7).
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Not for each open, bounded set Ω the space C(�Ω) is invariant: the Theorem is false on
the domain

Ω = {(x, y) ∈R2: |x|< 1, |y|< 1
} \ [0,1)× {0};

see [Bie03].
The Theorem also holds for Robin boundary conditions, we refer to [War03a].

2.7. Wentzell boundary conditions

As a further example we mention a very different kind of boundary condition. Let
m ∈ C[0,1] be strictly positive. Let

(Lu)(x)=m(x) · x(1− x)u′′(x), x ∈ (0,1),

for u ∈C2(0,1). Define the operator A on C[0,1] by

D(A)=
{
u ∈ C[0,1] ∩C2(0,1): lim

x→0
x→1

(Lu)(x)= 0
}
,

Au= Lu.

Then A generates a holomorphic C0-semigroup T of angle π/2. Moreover, T is positive
and contractive.

We refer to Campiti and Metafune [CM98] for this and more general degenerate elliptic
operators with Wentzell boundary conditions.

2.8. Dynamic boundary conditions

Let Ω ⊂ Rn be a bounded, open set of class C2. We will introduce a realization of the
Laplacian in C(�Ω) with Wentzell–Robin boundary conditions. By C1

ν (
�Ω) we denote the

space of all functions f ∈C(�Ω) for which the outer normal derivative

∂f

∂ν
(z)=− lim

t↓0

f (z− t · ν(z))− f (z)

t

exists uniformly for z ∈ ∂Ω ; see [[DL88], Vol. 1, Sect. II.1.3b]. Let β,γ ∈ C(∂Ω) and
suppose that β(z) > 0 for all z ∈ ∂Ω . Define the operator A on C(�Ω) by

D(A) :=
{
f ∈C1

ν

(�Ω ): �f ∈C
(�Ω ),�f + β

∂f

∂ν
+ γf = 0 on ∂Ω

}
,

Af :=�f.
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THEOREM. The operator A generates a positive, compact and holomorphicC0-semigroup
on C(�Ω).

Favini, Goldstein, Goldstein and Romanelli [FGGR02] were the first to prove that A is
a generator with the help of dissipativity. An approach by form methods was then given
in [AMPR03]. Warma [War03b] proved analyticity in the case where Ω is an interval.
It was Engel [Eng04] who succeeded to prove that the semigroup is holomorphic in the
general case.

The boundary conditions incorporated into the domain of A express in fact dynamic
boundary conditions for the evolution equation. To see this, denote by T the semigroup
generated by A. Let f ∈ C(�Ω) and let u(t) = T (t)f . Then u ∈ C1((0,∞),C(�Ω)) and
u̇(t) = �u(t), t > 0, on Ω . Moreover, �u(t) ∈ C(�Ω) and �u(t) = −β ∂u

∂ν
(t) − γ u(t)

on ∂Ω . Hence,

u̇(t)=−β
∂u

∂ν
(t)− γ u(t) on ∂Ω, t > 0.

3. Asymptotics

Most important and interesting is the study of the asymptotic behavior of a semigroup T (t)

for t →∞. The philosophy is, as for other questions, that one knows better the generator
and its resolvent than the semigroup. Thus the challenge is to deduce the asymptotic behav-
ior from spectral properties of the generator. Here we will describe some principal results
with emphasis on those which can be applied to parabolic equations in Section 8. We re-
fer to [[ABHN01]] and [[Nee96]] for a systematic theory of the asymptotic behavior of
semigroups and to [[EN00]] for other kinds of examples.

3.1. Exponential stability

Let T be a C0-semigroup with generator A. By

s(A)= sup
{
Reλ: λ ∈ σ(A)

}
we denote the spectral bound of A. We say that T is exponentially stable if ω(T ) < 0; i.e.,
if there exist ε > 0, M � 0 such that∥∥T (t)

∥∥� Me−εt , t � 0.

It is easy to see that T is exponentially stable if and only if

lim
t→∞

∥∥T (t)
∥∥= 0.
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FUNDAMENTAL QUESTION. Does s(A) < 0 imply that T is exponentially stable? In gen-
eral this is not true. The realization of the Cauchy problem{

∂u
∂t

(t, s)= s ∂u
∂s

(t, s), t > 0, s > 1,

u(0, s)= u0(s), s > 1,

in the Sobolev space W 1,2(1,∞) leads to a C0-semigroup T whose generator A has spec-
tral bound s(A) <− 1

2 but T is unbounded [[ABHN01], p. 350]. An example of a hyper-
bolic equation is given by Renardy [Ren94].

However, additional hypotheses are known, which lead to a positive answer. Here we
consider three important cases corresponding to a regularity assumption, semigroups on
Hilbert space and a positivity assumption.

3.1.1. Eventually norm continuous semigroups. A C0-semigroup T is called eventu-
ally norm-continuous if limt↓0 ‖T (t0 + t) − T (t0)‖ = 0 for some t0 > 0, and T is called
norm-continuous if this holds for all t0 > 0. Of course, each holomorphic semigroup has
this property.

THEOREM. Let A be the generator of an eventually norm-continuous semigroup T .
If s(A) < 0, then T is exponentially stable.

For further extensions we refer to [[ABHN01], Chapter 5], [Bla01], [BBN01].
We mention some perturbation results: If A generates an eventually norm continu-

ous C0-semigroup T on X and B ∈ L(X) is compact, then A + B also generates an
eventually norm-continuous C0-semigroup. The compactness assumption cannot be omit-
ted, in general. It can be omitted if T is norm-continuous on (0,∞). Eventually norm-
continuous semigroups appear in models for cell growth. We refer to [[Nag86], A-II.1.30
and C-IV.2.15].

3.1.2. The Gearhart–Prüss theorem. Let H be a Hilbert space. Assume that s(A) < 0
and supReλ>0 ‖R(λ,A)‖<∞. Then T is exponentially stable.

There are several proofs of this result which all depend on the fact that the vector-valued
Fourier transform is an isomorphism for Hilbert spaces. Prüss’ proof [Prü84] uses Fourier-
series. The above result is not true on Lp-spaces for 1 � p �∞, p �= 2; see [ArBu02],
Example 3.7.

3.1.3. Positive semigroups on Lp-spaces. In the next result we consider a C0-semigroup
T on Lp(Ω,Σ,μ), where (Ω,Σ,μ) is a measure space and 1 � p <∞. The semigroup
is called positive if T (t)f � 0 for each 0 � f ∈ Lp(Ω,Σ,μ). Of course, here f � 0
means that f (x) � 0 μ-a.e. For positive semigroups, there is an easy criterion for negative
spectral bound: One has

s(A) < 0 if and only if A is invertible and A−1 � 0.
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THEOREM (Weis [Wei95]). Let A be the generator of a positive C0-semigroup T

on Lp(Ω), 1 � p <∞. If s(A) < 0, then T is exponentially stable.

For a proof and further references we refer to [[ABHN01], 5.3.6] and [[Nee96]]. A sim-
ilar result is true on C0(Ω), where Ω is a locally compact space [[ABHN01], 5.3.8], but
false on a space Lp ∩Lq [[ABHN01], 5.1.11].

3.2. Ergodic semigroups

Let T be a bounded C0-semigroup on a Banach space X. Denote by A the generator of T

and by A∗ the adjoint of A. We say that T is ergodic if

Px = lim
t→∞

1

t

∫ t

0
T (s)x ds

exists for all x ∈X.

ERGODIC THEOREM. The following assertions are equivalent:
(i) T is ergodic;

(ii) X= kerA⊕R(A);
(iii) kerA separates kerA∗.

In that case P is the projection onto kerA along R(A).

Here we denote by R(A) = {Ax: x ∈ D(A)} the range of A. One has always
kerA∩R(A)= {0}. To say that kerA separates kerA∗ means that for all x∗ ∈ kerA∗,
x∗ �= 0, there exists x ∈ kerA such that 〈x∗, x〉 �= 0. Note that kerA∗ always separates
kerA (by the Hahn–Banach theorem). Thus on reflexive spaces, ergodicity is automatic.

THEOREM. Every bounded C0-semigroup on a reflexive space is ergodic.

It is interesting to know whether reflexivity is the best possible hypothesis on the Ba-
nach space in order to guarantee automatic ergodicity. And indeed it is, under some ad-
ditional hypothesis. In fact, on a general Banach space no method is known to construct
nontrivial C0-semigroups. For this reason one has to suppose some geometric property.
We will assume that X has a Schauder basis. See Section 4.5.2 for the precise defini-
tion and also for a method to construct diagonal semigroups under this hypothesis. The
following theorem is a semigroup version of a result on power bounded operators by Fonf–
Lin–Wojtaszcyk [FLW01] which was recently given by Mugnolo [Mug02].

THEOREM. Let X be a Banach space with a Schauder basis. Assume that each bounded
C0-semigroup on X is ergodic. Then X is reflexive.

We conclude by an example. Denote by Gp the Gaussian semigroup, on Lp(Rn),
1 � p �∞, and by �p its generator (see Section 2.4). Then G1 is not ergodic since
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ker�1 = 0 and ker�∞ = R · 1. The semigroup Gp is ergodic for 1 < p <∞. But one
can even show that limt→∞Gp(t) = 0 strongly in Lp(Rn), 1 < p <∞. Strong conver-
gence, and not merely convergence in mean, is the subject of the next section and the result
for the Gaussian semigroup follows from Section 3.3.2.

3.3. Convergence and asymptotically almost periodicity

In the preceding section we described when a semigroup converges in mean. Now we in-
vestigate a stronger property, namely strong convergence (see Theorem 2 of Section 3.3.2).
More generally, we consider semigroups which can be decomposed into a semigroup con-
verging strongly to zero and an almost periodic group.

Let T be a bounded C0-semigroup on X with generator A. We say that T is asymptoti-
cally almost periodic if X =X0 ⊕Xap, where

X0 :=
{
x ∈X: lim

t↓0
T (t)x = 0

}
Xap := span

{
x ∈X: ∃η ∈R, T (t)x = eiηtx

}
.

Note that X0 and Xap are invariant under the semigroup. Moreover, there exists a bounded
C0-semigroup U on Xap such that T (t)|Xap = U(t), t � 0. Let σp(A) := {λ ∈ C: ∃x ∈
D(A), x �= 0,Ax = λx} be the point spectrum of A. If σp(A)∩ iR⊂ {0}, then Xap = kerA.
In that case T is asymptotically almost periodic if and only if Px := limt→∞ T (t)x con-
verges for all x ∈X (and not just only in mean as considered in the previous section).

3.3.1. Compact resolvent. Let A be an operator with nonempty resolvent set ρ(A).
We say that A has compact resolvent if R(λ,A) is compact for all (equivalently one)
λ ∈ ρ(A). This is equivalent to saying that the injection D(A) ↪→ X is compact where
D(A) carries the graph norm. It implies that σ(A)= σp(A) is a sequence converging to∞
(unless dimX <∞).

THEOREM [[ABHN01], p. 361]. Let T be a bounded C0-semigroup whose generator has
compact resolvent. Then T is asymptotically almost periodic.

This result can be generalized to the case where σ(A) ∩ iR is countable with more
involved proofs, though.

3.3.2. Countable spectrum. Let T be a bounded C0-semigroup with generator A.

THEOREM 1. Assume that X is reflexive and σ(A)∩ iR is countable. Then T is asymptot-
ically almost periodic.

If X is not reflexive, one needs an ergodicity hypothesis.

THEOREM 2. Assume that
(a) σ(A)∩ iR is countable;



16 W. Arendt

(b) σp(A
∗)∩ iR⊂ {0};

(c) T is ergodic.
Then Px = limt→∞ T (t)x converges for all x ∈X.

REFERENCES: [[ABHN01], Chapter 5], [Vu97]. So far, there does not exist a (spectral)
characterization of strong convergence. But we refer to Chill and Tomilov [CT03,CT04]
for very interesting (not purely spectral) conditions.

3.4. Positive semigroups

The asymptotic behavior of positive semigroups is most interesting and has applications
to many areas, for example population dynamics and transport theory (see [[EN00]],
[[Mok97]], [[Nag86]]). Here we think more of applications to parabolic equations and
establish a result on convergence to a rank-1-projection which will be applied to a second-
order parabolic equation (see Section 3.5.1 and (8.5)). We also present some other results
which are obtained by putting together the results on countable spectrum of Section 3.3
and Perron–Frobenius theory for positive semigroups. Throughout this section we assume
that X is a space of the following two kinds:

(a) X = Lp(Ω), 1 � p <∞, where (Ω,Σ,μ) is a σ -finite measure space, or
(b) X = C0(K), where K is locally compact.

Here we let C0(K) := {f :K → C continuous: for each ε > 0 there exists a compact
set Kε ⊂ K such that |f (x)| � ε for x ∈ K \ Kε}. Of course, if K is compact, then
C0(K)= C(K).

By X+ we denote the cone of all functions f in X which are positive almost everywhere
if X = Lp and everywhere if X = C0(K). Let T be a positive C0-semigroup on X; i.e.,
T satisfies T (t)X+ ⊂X+ for all t > 0. Denote by A the generator of T . At first we recall
that

s(A)= ω(T ) (3.1)

and s(A) ∈ σ(A) if σ(A) �= ∅, two important special properties of positive C0-semigroups
on X (see Section 1.3 for the definition of ω(T ), and [[ABHN01], Theorems 5.3.6
and 5.3.1] for the proofs).

THEOREM. Let T be a bounded, ergodic, eventually norm-continuous, positive C0-
semigroup on X. Then

Pf = lim
t→∞T (t)f

exists for all f ∈X.

As a consequence P is a positive projection, the projection onto kerA along R(A).
Recall that each holomorphic semigroup is eventually norm-continuous and ergodicity is
automatic if X = Lp , 1 <p <∞.
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It is a remarkable result of Perron–Frobenius theory that σ(A) ∩ iR ⊂ {0} whenever
T is positive, bounded and eventually norm-continuous, [[Nag86], C-III.2.10, p. 202 and
A-II.1.20, p. 38]. Thus the theorem follows from Theorem 2 in Section 3.3.

3.5. Positive irreducible semigroup

We assume again that X = Lp(Ω), 1 � p <∞, or X = C0(K) as in Section 3.4. An
element f ∈ Lp(Ω) is called strictly positive if f (x) > 0 a.e. An element f ∈ C0(K) is
called strictly positive if f (x) > 0 for all x ∈K . Finally, a functional ϕ ∈ C0(K)∗ is called
strictly positive if

〈ϕ,f 〉> 0 for all f ∈C0(K)+ \ {0}.
Let u ∈X and ϕ ∈X∗ be strictly positive such that 〈ϕ,u〉 = 1. Then Pf = 〈ϕ,f 〉u defines
a projection on X. We call P a strictly positive rank-1-projection.

DEFINITION [[Nag86], p. 306]. A positive C0-semigroup is irreducible if for some
(equivalently all) λ > s(A) the function R(λ,A)f is strictly positive for all f ∈X+ \ {0}.

Irreducibility has many remarkable consequences (see [[Nag86], p. 306]). For exam-
ple, if X = C0(K), it implies that σ(A) �= ∅. This also remains true on X = Lp(Ω),
1 � p <∞, if in addition we assume that T (t0) is compact for some t0 > 0. However,
this case is more difficult and depends on a deep result of de Pagter [[Nag86], C-III-3.7].

3.5.1. Convergence to a rank-1-projection. In the following theorem we assume that
T (t0) is compact for some t0 > 0. This implies that T (t) is compact for all t > t0 and that
T is norm-continuous on [t0,∞). For example, if T is holomorphic and A has compact
resolvent, then T (t) is compact for all t > 0.

THEOREM. Let T be a positive, irreducible C0-semigroup on X. Assume that T (t0) is
compact for some t0 > 0. Then s(A) > −∞ and there exists a strictly positive rank-1-
projection P such that∥∥e−s(A)tT (t)− P

∥∥� Me−εt , t � 0,

for some M � 0, ε > 0.

Thus the rescaled semigroup converges exponentially to a rank-1-projection. Such
rescaled convergence is sometimes called balanced exponential growth and plays an im-
portant role for models describing cell growth (see [Web87]). Here the theorem will be
applied to parabolic equations (see Section 8.5).

PROOF OF THEOREM. Since σ(A) �= ∅ we can assume that s(A) >−∞. Since T (t0) is
compact, T is quasicompact [[Nag86], B-IV.2.8, p. 214]. Now the result follows from
[[Nag86], C-IV.2.1, p. 343, and C-III.3.5(d), p. 310]. �
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3.5.2. Convergence to a periodic group. The following result is a combination of Perron–
Frobenius theory for positive semigroups and the results on countable spectrum of Sec-
tion 3.3. Let T be a bounded C0-semigroup with generator A. Assume that A has compact
resolvent. Then we know from Section 3.3 that X = X0 ⊕ Xap, where X0 and Xap are
invariant under T . Moreover, there exists a C0-group U on Xap such that U(t)= T (t)|Xap

for t � 0.

THEOREM. In addition to the assumptions made above, if T is positive and irreducible,
then U is periodic.

PROOF. If s(A) < 0, then Xap = {0}. If σ(A)∩ iR= {0}, then Xap = kerA; i.e., U(t)≡ I .
If σ(A)∩ iR �= {0}, it follows from [[Nag86], C-III.3.8, p. 313] that σ(A)∩ iR= i 2π

τ
Z for

some τ > 0. It follows from the definition of Xap that T (t + τ )x = T (t)x , t � 0, for all
x ∈Xap. �

4. Functional calculus

In this section we consider sectorial operators. These are unbounded operators whose spec-
tra lie in a sector. Generators of bounded C0-semigroups are of this type. If A is such an
operator, we will define closed operators f (A) for a large class of holomorphic functions
defined on a sector. Of particular importance are fractional powers Aα . We will introduce
the class BIP which is important to establish theorems of maximal regularity but also for
results on interpolation. Throughout this chapter X is a complex Banach space.

4.1. Sectorial operators

Given an angle 0 < ϕ < π , we consider the open sector

Σϕ :=
{
reiα: r > 0, |α|< ϕ

}
.

Let X be a Banach space. An operator A is called ϕ-sectorial if

σ(A)⊂Σϕ (4.1)

and
sup

λ∈C\Σϕ

∥∥λR(λ,A)
∥∥<∞. (4.2)

An operator A on X is called sectorial if there exists 0 < ϕ < π such that A is
ϕ-sectorial. In that case we define the sectoriality angle ϕsec(A) of A by

ϕsec(A) := inf
{
ϕ ∈ (0,π): (4.1) and (4.2) are valid

}
. (4.3)

Note that ϕsec(A) ∈ [0,π).
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4.1.1. Simple criterion. If (−∞,0)⊂ ρ(A) and∥∥λR(λ,A)
∥∥� c for all λ < 0 and some c � 0, then A is sectorial.

This follows from the power series expansion of the resolvent.

4.1.2. Bounded holomorphic semigroups. An operator A is sectorial with ϕsec(A) < π
2

if and only if −A generates a bounded holomorphic semigroup T . It is a C0-semigroup if
and only if D(A) is dense. This is automatically the case if X is reflexive.

4.1.3. Bounded semigroups. If −A generates a bounded C0-semigroup, then A is secto-
rial and ϕsec(A) � π

2 .

4.1.4. Injective operators. Let A be a sectorial operator with range R(A) := {Ax: x ∈
D(A)}. If A is injective, then A−1 with domain D(A−1) = R(A) is sectorial and
ϕsec(A

−1)= ϕsec(A).

4.1.5. Reflexive spaces. If A is an injective sectorial operator on a reflexive space, then
D(A) ∩R(A) is dense.

4.1.6. Warning. The notion of sectorial operators is not universal in the literature. In par-
ticular, it does not coincide with Kato’s definition in [[Kat66]]. In [PS90], [DHP01]
and [[Prü93]] the additional assumption that A is injective, densely defined with dense
image is incorporated into the definition of sectorial. This implies in particular that
D(A) ∩R(A) is dense.

4.2. The sum of commuting operators

Many interesting problems can be formulated in the following form. Let A and B be oper-
ators on a Banach space: Under which conditions is the problem

Ax +Bx = y (P )

well posed? This means that for all y ∈ X there exists a unique x ∈ D(A) ∩D(B) solv-
ing (P ). In this section we will establish a spectral theoretical approach which leads to a
“weak solution”. We define the operator A+B on the domain D(A+B) :=D(A)∩D(B)

by (A+B)x =Ax +Bx .
Assume that ρ(A) ∩ ρ(B) �= ∅. We say that A and B commute if R(λ,A)R(λ,B) =

R(λ,B)R(λ,A) for all (equivalently one) λ ∈ ρ(A) ∩ ρ(B). This is equivalent to saying
that for some (equivalently all) λ ∈ ρ(A) one has R(λ,A)D(B)⊂D(B) and BR(λ,A)x =
R(λ,A)Bx for all x ∈D(B). For example, if A and B generate C0-semigroups S and T ,
then A and B commute if and only if S(t)T (t) = T (t)S(t) for all t � 0. In that case
U(t) = T (t)S(t) is a C0-semigroup, the operator A + B is closable and A+B is the
generator of U .
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THEOREM. Let A, B be two commuting sectorial operators such that

ϕsec(A)+ ϕsec(B) < π.

Then A+B has a unique extension (A+B)∼ such that (ω,∞)⊂ ρ((A+B)∼) for some
ω ∈R and such that (A+B)∼ commutes with A. Moreover,

σ
(
(A+B)∼

)⊂ σ(A)+ σ(B). (4.4)

If D(A) is dense in X, then A+B is closable and (A+B)∼ is the closure of A+B .

Note that by (4.4), (A+ B)∼ is invertible if 0 ∈ ρ(A) or 0 ∈ ρ(B). This result is due to
Da Prato and Grisvard [DPG75], Théorème 3.7, under the assumption that D(A) is dense.
The spectral inclusion (4.2.1) was proved in [[Prü93], Theorem 8.5] and in [ARS94], where
also nondensely defined operators are considered.

If A or B is invertible, then by the Theorem, for each y ∈ X, there exists a unique
x ∈D((A+B)∼) such that

(A+B)∼x = y.

One aim of the functional calculus to be developed here is to establish conditions un-
der which x ∈ D(A) ∩ D(B), which is expressed by saying that the solution has maxi-
mal regularity.

4.3. The elementary functional calculus

Let A be a sectorial operator and let ϕsec(A) < ϕ < π .

4.3.1. Invertible operators. By H∞
1 (Σϕ) we denote the space of all bounded holomor-

phic functions f :Σϕ →C such that∣∣f (z)
∣∣� c|z|−γ , |z|� 1, (4.5)

where c � 0, γ > 0 depend on f . Then H∞
1 (Σϕ) is an algebra for pointwise operations.

Let ϕsec(A) < ϕ1 < ϕ. Consider the path

Γ (r)=
{−re−iϕ1 if r < 0,

reiϕ1 if r � 0.

For f ∈H∞
1 (Σϕ) we define f (A) ∈L(X) by

f (A)= 1

2π i

∫
Γ

f (λ)R(λ,A)dλ. (4.6)
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This definition does not depend on the choice of ϕ1. The mapping f �→ f (A) is an algebra
homomorphism from H∞

1 (Σϕ) into L(X) such that

fλ(A)=R(λ,A) for λ ∈C \Σϕ,

where fλ(z)= 1
λ−z

. Now let x ∈D(A). Then

f (A)x = (I +A)g(A)x, (4.7)

where g(λ)= f (λ)
1+λ

. This follows from Cauchy’s theorem since R(λ,A)− 1
1+λ

R(λ,A)(I +
A)= 1

1+λ
I . For f ∈H∞(Σϕ) we define f (A) by

f (A)= (I +A)g(A) (4.8)

with g(λ) = f (λ)
1+λ

. Since g ∈ H∞
1 (Σϕ), one has g(A) ∈ L(X) and so f (A) is a closed

operator with domain

D
(
f (A)

) := {x ∈X: g(A)x ∈D(A)
}
.

This definition is consistent with (4.6) if f ∈ H∞
1 (Σϕ). Next we relax the hypothesis of

invertibility.

4.3.2. Injective operators. Let A be a sectorial operator and ϕ > ϕsec(A). Denote
by H∞

0 (Σϕ) the algebra of all bounded holomorphic functions f :Σϕ → C satisfying
an estimate∣∣f (z)

∣∣� c|z|−γ , |z|> 1,∣∣f (z)
∣∣� c|z|γ , |z|� 1,

where c � 0 and γ > 0 depend on f . For f ∈H∞
0 (Σϕ) we define f (A) ∈ L(X) by (4.6).

Now assume that A is injective. The operator B = A(I + A)−2 is bounded and injec-
tive with range D(A) ∩ R(A). Hence, A+ 2I + A−1 = B−1 with domain D(A) ∩ R(A)

is a closed, injective operator. Now let f ∈ H∞(Σϕ). Let g(λ) = λ

(1+λ)2 f (λ). Then
g ∈H∞

0 (Σϕ). Hence, g(A) ∈ L(X). We define f (A) by

f (A)= (A+ 2I +A−1)g(A)

= (I +A)2A−1g(A). (4.9)

Then f (A) is a closed operator. A similar argument as in Section 4.3.1 shows that this
new definition is consistent with the previous one (4.6) if f ∈H∞

0 (Σϕ). Moreover, if A is
invertible, then the definition is consistent with Section 4.3.1.

In this way we defined a closed operator f (A) for each f ∈H∞(Σϕ). We may extend
the definition to an even larger class of holomorphic functions. Let Ψ (λ)= λ

(1+λ)2 and let
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L(A)= (I +A)2A−1. Denote by B(Σϕ) the space of all holomorphic functions f on Σϕ

such that Ψ nf ∈H∞
0 (Σϕ) for some n ∈N. Then we define the closed operator f (A) by

f (A)= L(A)n
(
Ψ nf

)
(A). (4.10)

This definition is consistent with the previous ones.
We call the functional calculus defined in Sections 4.3.1 or 4.3.2 the elementary func-

tional calculus. The following properties justify this name.

4.3.3. Properties of the functional calculus. Let A be an injective sectorial operator.
For λ ∈C \Σϕsec(A) one has

R(λ,A)= fλ(A),

where fλ(z) = 1
z−λ

. The set H(A) := {f ∈ B(Σϕ): f (A) ∈ L(X)} is a subalgebra
of B(Σϕ) and

f �→ f (A)

is an algebra homomorphism [McI86,LeM98b].

4.3.4. Strip-type operators. Instead of sectors we consider here a horizontal strip

Stω :=
{
z ∈C: | Imz|<ω

}
where ω > 0. We say that an operator B on X is of strip type, if there exists a strip Stω
such that

(a) σ(B)⊂ Stω and
(b) sup| Imλ|�ω ‖R(λ,B)‖<∞.

We denote by

ωst(B)= inf
{
ω > 0: (a) and (b) hold

}
the strip-type of B . Two kinds of examples are important: the case where iB generates
a C0-group and B = logA to which the two following subsections are devoted.

4.3.5. Groups. Let B be an operator such that iB generates a C0-group U . Denote by

ωU := inf
{
ω ∈R: ∃M � 0 such that

∥∥U(t)
∥∥� Meω|t | for all t ∈R

}
the group type of U . Since the resolvent of ±iB is the Laplace transform of the semigroup
(U(±t))t�0, it follows that B is a strip type operator and

ωst(B) � ωU . (4.11)
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In general, it may happen that

ωst(B) < ωU

(see [Wol81]). But on Hilbert space, strip type and group type coincide by the Gearhart–
Prüss theorem; i.e.,

ωst(B)= ωU (4.12)

whenever iB generates a C0-group U on a Hilbert space. Next we give another important
example of a strip-type operator.

4.3.6. The logarithm. Let A be an injective sectorial operator. Let ϕ > ϕsec(A). Let
g(λ)= λ

(1+λ)2 logλ. Then g ∈H∞
0 (Σϕ). We define

logA= (I +A)2A−1g(A).

Thus logA is a closed operator by the same argument as in Section 4.3.2. We note some of
the properties of the logarithm. Recall that A−1 is sectorial. One has

logA−1 =− logA. (4.13)

THEOREM (Haase [Haa03a], Nollau [Nol69]). Let A be a sectorial operator. Then logA is
a strip-type operator and

ωst(logA)= ϕsec(A).

Now it may happen that i logA generates a C0-group. Then this group is given by the
imaginary powers of A, which we consider in Section 4.4.

Further references: [Oka99,Oka00a,Oka00b].

4.4. Fractional powers and BIP

In the section we introduce fractional powers Aα of a sectorial operator A. We first consider
the case where A is invertible which is simpler to present.

4.4.1. Fractional powers of invertible operators. Let A be an invertible sectorial opera-
tor. Let α ∈ C such that Reα > 0. Then the function fα(z) = z−α is in H∞

1 (Σϕ) for all
0 < ϕ < π . Thus we may define

A−α = fα(A) ∈ L(X), Reα > 0, (4.14)

by (4.6). It follows that

A−αA−β =A−(α+β), Reα,Reβ > 0. (4.15)
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In fact, (A−α)Reα>0 is a bounded holomorphic semigroup. Its generator is − logA (which
was defined in Section 4.3.6). The operator A is densely defined if and only if logA is so
(i.e., if and only if (A−α)Reα>0 is a C0-semigroup).

A particular case of Section 4.4.1 occurs when −A generates an exponentially stable
C0-semigroup T (i.e., ‖T (t)‖ � Me−εt for all t � 0 and some M � 0, ε > 0). Then A is
invertible and A−α can be expressed in terms of the semigroup instead of the resolvent as
above, namely,

A−α = 1

Γ (α)

∫ ∞

0
tα−1T (t)dt (4.16)

for Reα > 0.
Next we consider a more general class of sectorial operators.

4.4.2. Fractional powers of injective sectorial operators. Let A be an injective sectorial
operator and let π > ϕ > ϕsec(A). Let α ∈C, fα(z)= zα , z ∈Σϕ . Then fα ∈B(Σϕ). Thus

Aα = fα(A), α ∈C,

is defined according to Section 4.3.2. It is a closed injective operator and the following
properties are valid:

A−α = (Aα
)−1 = (Aα

)−1
, α ∈C; (4.17)

AαAβ ⊂Aα+β, α,β ∈C; (4.18)

AαAβ =Aα+β, Reα,Reβ > 0. (4.19)

If Reα > 0, then

D
(
(A+ω)α

)=D
(
Aα
)

for all ω � 0. (4.20)

Moreover, for 0 < α < π
ϕsec(A)

, the operator Aα is sectorial and

ϕsec
(
Aα
)= αϕsec(A) and log

(
Aα
)= α logA; (4.21)

moreover,(
Aα
)β =Aαβ, Reβ > 0. (4.22)

Formula (4.21) is interesting: it shows in particular that −Aα generates a bounded holo-
morphic semigroup if 0 < α is small enough.

There is an enormous amount of literature on fractional powers and we refer in particular
to the recent monograph [[MS01]].

Next we consider imaginary powers Ais of an injective sectorial operator. They play an
important role for regularity theory and also for interpolation theory.
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4.4.3. Characterization of BIP. Let A be a sectorial injective operator on X. Then by
Section 4.4.2 we can define the closed operators Ais , s ∈ R, and also the closed operator
logA (by Section 4.3.6).

THEOREM. The following assertions are equivalent:
(i) D(A) ∩R(A) is dense and Ais ∈L(X) for all s ∈R.

(ii) The operator i logA generates a C0-group U .
In that case U(s)=Ais , s ∈R.

DEFINITION. We say that A has bounded imaginary powers and write A ∈ BIP, if A is
injective, sectorial and if the two equivalent conditions of Theorem are satisfied.

Note that this includes the hypothesis that D(A)∩R(A) be dense in X. Recall however,
that D(A)∩R(A) is automatically dense in X if X is reflexive and A is a sectorial, injective
operator. It is obvious that

A ∈ BIP if and only if A−1 ∈ BIP, (4.23)

References: [Haa03a], [[Prü93]].

4.4.4. BIP for invertible operators. Property BIP can be formulated in a different way if
the operator is invertible. Let A be sectorial of dense domain. Assume that 0 ∈ ρ(A). Then,
for Reα > 0, the operator A−α ∈L(X) was defined in Section 4.4.1, and we had seen that
(A−α)Reα>0 is a holomorphic C0-semigroup which is bounded on Σϕ for each 0 < ϕ < π

2 .
The generator of this semigroup is − logA. Now it follows from Section 2.3 that A ∈ BIP
if and only if the holomorphic C0-semigroup (A−α)Reα>0 has a trace. We formulate this
as a theorem.

THEOREM. Let A be a sectorial densely defined operator with 0 ∈ ρ(A). The following
assertion are equivalent:

(i) A ∈ BIP;
(ii) there exists c > 0 such that ‖A−α‖� c whenever Reα > 0, |α|� 1.

4.4.5. The BIP-type. Let A ∈ BIP. Then we denote by

ϕbip(A)= inf
{
ω ∈R: ∃M � 0 such that

∥∥Ais
∥∥� Meω|s| for all s ∈R

}
the group-type of the C0-group (Ais)s∈R. We call ϕbip(A) the BIP-type of A. One al-
ways has

ϕsec(A) � ϕbip(A). (4.24)

Recall from (4.10) that ϕsec(A) = ωst(logA). If X is a Hilbert space, then ωst(logA) =
ϕbip(A) (by (4.12)). Thus we obtain

ϕbip(A)= ϕsec(A) on Hilbert space. (4.25)
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This is McIntosh’s result with a new proof due to Haase. The identity (4.25) is no longer
true on Banach spaces. Recently, an example is given by Haase [Haa03a,Haa03b] where

ϕsec(A) < π < ϕbip(A) on a UMD-space X. (4.26)

In fact, X = Lp(R,ω1 dx) ∩ Lq(R,ω2 dx) for 1 < p < 2 < q <∞ and ω1,ω2 strictly
positive measurable functions. Another example of different sectorial and BIP-angle is
given independently by Kalton [Kal03], where the operator has a bounded H∞-calculus,
in addition.

4.4.6. An inverse theorem for BIP operators. If A ∈ BIP, then (Ais)s∈R is a C0-group.
Which groups occur in this manner? There is a very satisfying answer if the underlying
Banach space has some geometric properties. We refer to Section 6.1.3 for the definition
of UMD-spaces. Here we just recall that each space Lp,1 <p <∞, is a UMD-space. Let
(U(s))s∈R be a C0-group with generator iB . Then B is a strip-type operator. Recall the
definition of ωst(B) from Section 4.3.4.

THEOREM (Monniaux). Let iB be the generator of a C0-group U on a UMD-space X.
Assume that

ωst(B) < π.

Then there exists a unique sectorial operator A such that Ais = U(s) for all s ∈ R.
We call A the analytic generator of U .

This theorem is due to Monniaux [Mon99] for the case where ωU < π (the group-
type of U). It was Haase [Haa03b] who observed that the weaker assumption ωst(B) < π

suffices. Of course, in the situation of the theorem one has B = logA. One may ask more
generally which strip type operators B are of the form logA for some sectorial operator A.
This seems to be unknown. It is known though, that the hypothesis on the Banach space
cannot be omitted in the above theorem (see [Mon99] for an example). More precisely,
on each Banach space X, to each C0-group U one can associate the analytic generator A.
If A is sectorial, then Ais =U(s), s ∈R. But if the space X is not a UMD-space, then it may
happen that ρ(A)= ∅. In particular, A is not sectorial. The notion of analytic generators
is due to Cioranescu and Zsidó [CZ76] before the notion and properties of UMD-spaces
were known. Their aim was to treat Tomita–Takesaki theory for von Neumann algebras.

4.4.7. Bounded analytic generators. We now describe when the C0-group (Ais)s∈R is
the boundary group of a holomorphic semigroup (see Section 2.3 for this notion).

PROPOSITION [Mon99]. Let U be a C0-group of type < π on a UMD-space X. The fol-
lowing assertions are equivalent:

(i) The analytic generator A of U is bounded;
(ii) there exists a holomorphic C0-semigroup (T (z))Rez>0 such that U(t)x =

limr↓0 T (it + r)x for all x ∈X.
In that case one has A= T (1).
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4.4.8. The Dore–Venni theorem. Next we establish the famous Dore–Venni theo-
rem [DoVe87] on maximal regularity. It gives an answer to the question of closedness
of A + B which arose in Section 4.2. We refer to Section 6.1.3 for the definition and
properties of UMD-spaces.

The following version of the Dore–Venni theorem is due to Prüss and Sohr [PS90].

THEOREM. Let X be a UMD-space. Let A,B ∈ BIP such that ϕbip(A) + ϕbip(B) < π .
Assume that A and B commute. Then A+B is closed. Moreover, A+B ∈ BIP and

ϕbip(A+B) � max
{
ϕbip(A),ϕbip(B)

}
.

If one of the operators is invertible, it is possible to deduce this result from Monniaux’
inverse theorem (Section 4.4.6). We sketch the proof.

PROOF [MON99]. Assume that 0 ∈ ρ(B). Then by Section 4.4.7 the group (B−is)s∈R is
the boundary of a holomorphic C0-semigroup T and B−1 = T (1). Let W(t)=AitB−it . By
Monniaux’ inverse theorem there exists a sectorial operator C such that Cit =AitB−it . It is
not difficult to show that C =AB−1 with domain D(C)= {x ∈X: B−1x ∈D(A)}. In par-
ticular, (AB−1 + I) is invertible. Let y ∈X. We have to find x ∈D(A)+D(B) such that
Ax +Bx = y; i.e., (AB−1 + I)Bx = y . Thus x = B−1(AB−1 + I)−1y is a solution. �

4.4.9. A noncommutative Dore–Venni theorem. The assumption that A and B commute
can be relaxed by imposing a growth condition on the commutator of the resolvent.

THEOREM (Monniaux and Prüss [MP97]). Assume that X is a UMD-space. Let
A, B ∈ BIP with ϕbip(A) + ϕbip(B) < π . Assume that 0 ∈ ρ(A). Let ψA > ϕbip(A),
ψB > ϕbip(B) be angles such that ψA + ψB < π . Assume that there exist constants
0 � α < β < 1 and c � 0 such that∥∥AR(λ,A)

[
A−1R(μ,B)−R(μ,B)A−1]∥∥� c

(1+ |λ|1−α)|μ|1+β

for all λ ∈Σπ−ψA and all μ ∈Σπ−ψB . Then there exists ω ∈ R such that A+ B + ω is
closed and sectorial.

This result can be applied to Volterra equations [MP97], to nonautonomous evolu-
tion equations [HM00a,HM00b] and also to prove maximal regularity of the Ornstein–
Uhlenbeck operator [MPRS00].

4.4.10. Interpolation spaces and BIP. Let A be an injective sectorial operator. Then
D(Aα) is a Banach space for the norm

‖x‖D(Aα) := ‖x‖+
∥∥Aαx

∥∥,
0 < α < 1.
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PROPOSITION ([[Tri95], p. 103], [Yag84], [[MS01], Theorem 11.6.1]). Let A ∈ BIP. Then
the complex interpolation space [X,D(A)]α is isomorphic to D(Aα) for 0 < α < 1.

Now assume in addition that A is invertible. Then Dore [Dor99a] (see also [Dor99b]
for the noninvertible case) showed that the part of A in the real interpolation space
(X,D(A))α,p has a bounded H∞-calculus whenever 0 < α < 1, 1 < p <∞. (See Sec-
tion 4.5 for the definition of H∞-calculus.) If X is a Hilbert space, then (X,D(A))α,2 =
[X,D(A)]α. Thus, if X is a Hilbert space, the part of A in [X,D(A)]α has a bounded
H∞-calculus. Observe that the part of A in D(Aα) is similar to A. Thus, if D(Aα) =
[X,D(A)]α, then A has a bounded H∞-calculus.

We have proved the converse of the above proposition and may formulate the following
characterization on Hilbert spaces.

THEOREM. Let A be a sectorial, invertible operator on a Hilbert space and let 0 < α < 1.
The following assertions are equivalent:

(i) A ∈ BIP;
(ii) D(Aα)= [X,D(A)]α ;

(iii) the H∞-calculus is bounded.

For further results on Hilbert spaces we refer to Section 5 and to the paper by Auscher,
McIntosh and Nahmrod [AMN97].

This interesting relation between BIP and interpolation spaces seemed to be the mo-
tivation of much research on operators with bounded imaginary powers in the seventies
(see, e.g., Seeley’s paper [See67]). Long time after this, the Dore–Venni theorem lead to a
different direction, namely regularity theory.

4.5. Bounded H∞-calculus for sectorial operators

Let A be an injective sectorial operator on a Banach space X and let π � ϕ > ϕsec(A).
Then for f ∈H∞(Σϕ) the closed operator f (A) was defined in Section 4.3.

DEFINITION. We say that A has a bounded H∞(Σϕ)-calculus if

f (A) ∈ L(X) for all f ∈H∞(Σϕ). (4.27)

In that case, the mapping

f �→ f (A)

is a continuous algebra homomorphism from H∞(Σϕ) into L(X).

We note the following: Let ϕsec(A) < ϕ1 < ϕ2 � π . If A has a bounded H∞(Σϕ1)-cal-
culus then also the H∞(Σϕ2)-calculus is bounded. Thus, the weakest property in this con-
text is to have a bounded H∞(Σπ)-calculus for the cut plane Σπ =C \ {x ∈R: x < 0}.
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DEFINITION. We write A ∈ H∞ to say that A is injective, sectorial and has a bounded
H∞(Σπ )-calculus. We let

ϕH∞(A) := inf
{
σ ∈ (ϕsec(A),π

]
: A has a bounded H∞(Σϕ)-calculus

}
.

4.5.1. Characterization via H∞
0 . Let A be an injective sectorial operator with dense do-

main and dense range, and let ϕ > ϕsec(A). Then A has a bounded H∞(Σϕ)-calculus if
and only if there exists c > 0 such that∥∥f (A)

∥∥L(X)
� c‖f ‖H∞(Σϕ) (4.28)

for all f ∈ H∞
0 (Σϕ). Note that H∞

0 (Σϕ) is not norm-dense in H∞(Σϕ). Still, there is
a canonical way to extend the calculus.

4.5.2. Unbounded H∞-calculus. It is not an easy matter to decide whether a given oper-
ator has a bounded H∞-calculus. Later we will give several criteria and examples. Here we
show a way to construct counterexamples. Let X be a Banach space. A sequence (en)n∈N is
called a Schauder basis of X if, for each x ∈X, there exists a unique sequence (xn)n∈N ⊂C

such that

∞∑
n=1

xnen = x. (4.29)

The Schauder basis is called unconditional if for each x =∑∞
n=1 xnen ∈ X the sequence∑∞

n=1 cnxnen converges in X for each c= (cn)n∈N ∈ �∞. Otherwise we call (en)n∈N a con-
ditional Schauder basis. If X has an unconditional Schauder basis it also has a conditional
Schauder basis [[Sin70], Chapter II, Theorem. 23.2]. In particular, each separable Hilbert
space has a conditional Schauder basis. Thus the following example is in particular valid
in a separable Hilbert space.

EXAMPLE (Unbounded H∞(Σπ )-calculus). Let X be a Banach space with a conditional
Schauder basis (en)n∈N. Define the operator A on X by

Ax =
∞∑
n=1

2nxnen (4.30)

with domain the set of all x =∑∞
n=1 xnen ∈ X such that (4.30) converges. Then A is

sectorial with ϕsec(A)= 0. However, A does not have a bounded H∞(Σπ )-calculus.

For the proof it is helpful to consider more general diagonal operators. Denote by BV
the space of all scalar sequences α = (αn)n∈N such that

‖α‖BV = |α1| +
∞∑
n=1

|αn+1 − αn|<∞.
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Then BV is a Banach space (isomorphic to �1). If
∑∞

n=1 yn converges in X, then∑∞
n=1 αnyn converges for each α ∈ BV . This follows from Abel’s partial summation rule

m∑
n=1

αnyn =
m∑

n=1

αn(sn+1 − sn)=
m∑

n=2

sn(αn−1 − αn)+ sm+1αm − s1α1,

where s1 = 0, sn =∑n−1
k=1 yk for n � 2. Thus, if α ∈ BV , then

Dαx =
∞∑
n=1

αnxnen (4.31)

for x =∑∞
n=1 xnen defines an operator Dα ∈ L(X). Moreover,

‖Dα‖� c‖α‖BV , α ∈BV, (4.32)

by the closed graph theorem (or a direct estimate). Next we consider unbounded diagonal
operators. Let (αn)n∈N ⊂C. Then

Dαx =
∞∑
n=1

αnxnen (4.33)

with D(Dα) := {x =∑∞
n=1 xnen: (4.33) converges} defines a closed operator on X. This

is obvious since the coordinate functionals

∞∑
n=1

xnen �→ xm

are continuous.

PROPOSITION. Let 0 < α1 < αn < αn+1 such that limn→∞ αn =∞. Then Dα is a sector-
ial operator of type ϕsec(Dα)= 0. Moreover, 0 ∈ ρ(Dα) and Dα has compact resolvent.

PROOF. Let 0 < ϕ < π . Let π � |θ | > ϕ, λ = reiθ , r > 0. Consider the sequence
βn = 1

reiθ−αn
. Then

βn − βn+1 = 1

r

{
1

eiθ − αn/r
− 1

eiθ − αn+1/r

}
,

∞∑
n=1

|βn − βn+1|� 1

r

∞∑
n=1

∫ αn+1/r

αn/r

1

|eiθ − x|2 dx

� 1

r

∫ ∞

0

1

|eiθ − x|2 dx = cϕ

r
,
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where cϕ does not depend on θ or r . Thus ‖Dβ‖ � c
r
. It is easy to see that Dβ =

(λ − Dα)
−1. This shows that Dα is sectorial of type 0. We omit the proof of compact-

ness of Dβ (see [LeM00]). �

Now let A be the operator of the example; i.e., A = Dα with αn = 2n. In order to
show that A has no bounded H∞(Σπ )-calculus we use the following (see [[Gar81], The-
orem 1.1. on pp. 287 and 284 ff ]).

INTERPOLATION LEMMA. Let b = (bn)n∈Z ∈ �∞(Z). Then there exists f ∈ H∞(Σπ )

such that

f
(
2n
)= bn for all n ∈ Z.

Let f ∈H∞(Σπ). It is easy to see from the definition that en ∈D(f (A)) and

f (A)en = f
(
2n
)
en.

Now assume that f (A) ∈ L(X). Then it follows that

lim
m→∞

m∑
n=1

f
(
2n
)
xnen = lim

m→∞f (A)

m∑
n=1

xnen

= f (A)x

converges for all x ∈ X. Thus, by the Interpolation Lemma,
∑∞

n=1 bnxnen converges for
all b ∈ �∞ and all x ∈X. This contradicts the fact that the basis is conditional.

A first example of this kind had been given by Baillon and Clément [BC91]. Further
developments are contained in [Ven93], [LeM00] and [Lan98].

4.5.3. BIP versus bounded H∞-calculus. It is clear from the definition that A ∈ H∞
implies A ∈ BIP whenever A is a sectorial, injective operator. It is remarkable that in
that case

ϕbip(A)= ϕH∞(A) (4.34)

(see [CDMY96]). Conversely, if X is a Hilbert space, then BIP implies boundedness of the
H∞-calculus by Section 4.4.10. This is not true on Lp-spaces for p �= 2 as the following
example shows.

EXAMPLE [Lan98]. Let 1 < p < ∞, p �= 2. There exists a sectorial injective opera-
tor A ∈ BIP on Lp which does not have a bounded H∞(Σπ )-calculus. We consider
the space L

p

2π of all scalar-valued 2π -periodic measurable functions on R such that
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‖f ‖p := 1
2π (
∫ 2π

0 |f (t)|p dt)1/p <∞. By en we denote the nth trigonometric polynomial
en(t)= eint , n ∈ Z. For f ∈L

p
2π , we denote by

f̂ (n) := 1

2π

∫ 2π

0
f (t)eint dt

the nth Fourier coefficient. Then {en: n ∈ Z} is a Schauder basis of Lp

2π ; i.e.,

f = lim
n→∞

m∑
n=−m

f̂ (n)en =:
+∞∑

n=−∞
f̂ (n)en

for all f ∈Lp . Moreover, the Riesz-projection

R :f �→
∞∑
n=0

f̂ (n)en

is bounded on L
p

2π . Consider the operator A on L
p

2π given by

Af =
+∞∑

n=−∞
2nf̂ (n)en (4.35)

with domain D(A)= {f ∈ L
p

2π : (4.35) converges}. Since the Riesz-projection is bounded
we can write A as the direct sum of A1 ⊕A2, where

A1f =
∞∑
n=0

2nf̂ (n)en,

A2f =
∞∑
n=1

2−nf̂ (−n)e−n

with appropriate domains. The first is injective and sectorial by Section 4.5.2 the sec-
ond is the inverse of an operator of the Proposition in Section 4.5.2. Thus A is sec-
torial and injective. By the same argument as in Section 4.5.2 one sees that A has no
bounded H∞(Σπ)-calculus if p �= 2. Now for a ∈ R consider the shift operator La

given by (Lau)(t)= u(t + a) for u ∈ L
p

2π . Then La ∈ L(L
p

2π ) and ‖La‖ = 1. Moreover,
(Lau)

∧(n)= einaû(n). Let a = s log 2. Then it follows that

Ais = La.

Thus A ∈ BIP and ‖Ais‖L(L
p

2π )
= 1, 1 <p <∞.
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4.6. Perturbation

Let A be a sectorial operator on a Banach space X. We consider perturbations A+B where
B :D(A)→X is linear. We say that B is A-bounded if B is continuous with respect to the
graph norm on D(A); i.e., if there exist constants a � 0, b � 0 such that

‖Bx‖� a‖Ax‖+ b‖x‖, x ∈D(A). (4.36)

The infimum over all a > 0 such that there exists b > 0 such that (4.36) holds is called
the A-bound of B . A small perturbation of A is a linear mapping B :D(A)→ X with
A-bound 0. This is equivalent to limλ→∞‖BR(λ,A)‖ = 0 as is easy to see. Here we
consider the following two stronger conditions.∥∥BR(λ,A)

∥∥� c

λβ
, λ � 1; (4.37)∥∥R(λ,A)Bx

∥∥� c

λβ
‖x‖, λ � 1, x ∈D(A). (4.38)

THEOREM. Assume that B :D(A)→ X is linear such that (4.37) or (4.38) is satisfied
for some β > 0, c � 0. Assume that A and A+ B are invertible and sectorial. Then the
following holds:

(a) A ∈H∞⇒A+B ∈H∞;
(b) A ∈ BIP⇒A+B ∈ BIP.

We refer to [AHS94] or [ABH01] for the proof. Given a sectorial operator A there exists
a constant εA > 0 such that A + B + ω is sectorial for some ω ∈ R whenever B has an
A-bound smaller than εA. However, the properties H∞ and BIP are not preserved.

COUNTEREXAMPLE [MY90]. There exists an invertible operator A ∈ H∞ on a Hilbert
space X such that, for each ε > 0, there exists an operator Bε :D(A)→X with A-bound
less than ε > 0 such that A+Bε +ω /∈ BIP for any ω ∈R.

In view of the counterexample one would not expect that the properties H∞ or BIP are
preserved under small perturbations. This seems to be unknown, though.

4.7. Groups and positive contraction semigroups

In this section we give two classes of examples of operators with bounded H∞-calculus.

4.7.1. Groups. Generators of bounded C0-groups and their squares yield an interesting
class of examples.

THEOREM [HP98]. Let B be the generator of a bounded C0-group on a UMD-space X.
Then
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(a) B has a bounded H∞(Σϕ)-calculus for each ϕ > π/2;
(b) −B2 has a bounded H∞(Σϕ)-calculus for each ϕ > 0.

We give an example.

4.7.2. The abstract Laplace operator. Let Uj , j = 1, . . . , n, be n commuting C0-groups
on a UMD-space X with generators Bj , j = 1, . . . , n. By Section 4.7.1 the operators −B2

j

have an H∞(Σϕ)-calculus for all ϕ > 0, j = 1, . . . , n. It follows from the Dore–Venni
theorem (Section 4.4.8) that the operator A := B2

1 + · · · +B2
n is closed with domain

D(A)=
n⋂

j=1

D
(
B2

j

)
.

Moreover, −A has a bounded H∞(Σϕ)-calculus for all ϕ > 0. We may consider A as
an abstract Laplace operator. Indeed, a concrete example is given by (Uj (t)f )(x) =
f (x + tej ) on Lp(Rn), 1 < p <∞, where ej denotes the j th unit vector in Rn. Thus
Af = �f with D(A) = W 2,p(Rn). For a more general noncommutative setting on Lie
groups see ter Elst and Robinson [tER96a].

4.7.3. Positive contraction semigroups on Lp . Next we consider positive semigroups.
The following result is due to Duong [Duo89] after a more special result was proved by
Cowling [Cow83]. Vector-valued versions are given in [HP98].

THEOREM. Let −A be the generator of a positive, contractive C0-semigroup on Lp(Ω),
1 <p <∞, where (Ω,Σ,μ) is a measure space. Then A has a boundedH∞(Σϕ)-calculus
for each ϕ > π/2.

This result can be extended to semigroups on Lp which are dominated by a positive
contraction semigroup. The proof can be reduced to the group case (Section 4.7.1) by an
interesting dilation theorem due to Fendler extending the Akcoglu dilation theorem for
single operators to semigroups. We give more details.

4.7.4. r-contractive semigroups on Lp . Let S be an operator on Lp(Ω), 1 � p �∞.
We say that S is regular, if S is a linear combination of positive operators; or equivalently,
if S is dominated by a positive operator T on Lp(Ω), i.e.,

|Sf |� T |f |, f ∈ Lp(Ω),

where |f |(x) = |f (x)|, x ∈ Ω . In that case there exists a smallest positive operator |S|
which dominates S. We call ‖S‖r := ‖|S|‖ the r-norm of S. If p = 1 or ∞, then every
bounded operator S on Lp(Ω) is regular and ‖S‖ = ‖S‖r , but if 1 < p <∞ this is false
(if Lp(Ω) has infinite dimension). We refer to [[Sch74], Chapter IV].

THEOREM. Let 1 < p <∞. Let T be a C0-semigroup on Lp(Ω) such that ‖T (t)‖r � 1
for all t � 0. Denote by −A the generator of T . Then A has a bounded H∞(Σϕ)-calculus
for each ϕ > π/2.
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PROOF [LeM98b]. By Fendler’s dilation theorem [Fen97] there exist a space Lp(Ω̂), con-
tractions j :Lp(Ω)→ Lp(Ω̂), P :Lp(Ω̂)→ Lp(Ω) and a contraction C0-group U on
Lp(Ω̂) such that T (t) = PU(t)j for all t � 0. Let −Â be the generator of U . By Sec-
tion 4.7.1 the H∞(Σϕ)-calculus for Â is bounded (ϕ > π/2). It is obvious that this carries
over to the H∞(Σϕ)-calculus of A, cf. Section 5.2.2. �

4.7.5. Holomorphic positive contraction semigroups. The angle obtained in Section 4.7.3
can be improved if the semigroup is bounded holomorphic. In fact, the following result due
to Kalton and Weis [KW01], Corollary 5.2, is proved with the help of R-boundedness tech-
niques which will be presented in Section 6.

THEOREM. Let 1 < p < ∞. Let −A be the generator of a bounded holomorphic
C0-semigroup T on Lp(Ω). Assume that

T (t) � 0,
∥∥T (t)

∥∥L(Lp(Ω))
� 1 for all t � 0.

Then A has a bounded H∞-calculus and ϕH∞(A) < π/2.

5. Form methods and functional calculus

On Hilbert space generators of contraction C0-semigroups are characterized by m-accreti-
vity. This most convenient criterion also implies boundedness of the H∞-calculus, as an
easy consequence of the Spectral Theorem after a dilation to a unitary group. If the semi-
group is holomorphic, then conversely, a bounded H∞-calculus also implies m-accretivity
after rescaling and changing the scalar product. In addition, the generator is associated
with a closed form. The interesting interplay of forms, m-accretivity and H∞-calculus on
Hilbert space, this is the subject of the present section.

5.1. Bounded H∞-calculus on Hilbert space

Things are much simpler on Hilbert space than on general Banach spaces. The BIP property
is equivalent to bounded H∞-calculus and all angles can be chosen optimal as was shown
in Section 4.4.10, (4.26) and (4.34). We reformulate this more formally.

THEOREM (McIntosh). Let A be an injective, sectorial operator on a Hilbert space. The
following are equivalent:

(i) A ∈ BIP;
(ii) for all ϕ > ϕsec(A), the H∞(Σϕ)-calculus is bounded;

(iii) the H∞(Σπ )-calculus is bounded.
In that case ϕbip(A)= ϕsec(A).

This optimal situation in Hilbert space contrasts the Lp-case, p �= 2, where we had
seen that property BIP does not imply boundedness of the H∞(Σπ )-calculus (see Sec-
tion 4.5.3). Also had we seen that it can happen that ϕsec(A) < π < ϕbip(A) on Lp , p �= 2.
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Also the Dore–Venni theorem needs fewer hypotheses on Hilbert space.

THEOREM (Dore–Venni on Hilbert space [DoVe87]). Let A and B be two commuting
injective, sectorial operators on a Hilbert space such that ϕsec(A)+ ϕsec(B) < π . Assume
that A ∈ BIP. Then A+B is closed.

We mention that this result does not hold on Lp for p �= 2 ([Lan98], Theorem 2.3).

5.2. m-accretive operators on Hilbert space

The simplest unbounded operators are multiplication operators. Let (Ω,Σ,μ) be a mea-
sure space and let m :Ω → R be a measurable function. Define Am on L2(Ω) by
Amu=mu with domain

D(Am)= {u ∈ L2(Ω): m · u ∈L2(Ω)
}
.

For the operator Am one has the best possible spectral calculus. For each f ∈ L∞(R),
we may define f (A) = Af ◦m ∈ L(L2(Ω)). It is not difficult to see that this definition is
consistent with our previous one whenever f ∈H∞(Σϕ) for some ϕ > π/2.

5.2.1. The Spectral theorem. The spectral theorem says that each self-adjoint operator is
unitarily equivalent to a multiplication operator.

SPECTRAL THEOREM. Let A be a self-adjoint operator on H . Then there exists a
measure space (Ω,Σ,μ), a measurable function m :Ω→R and a unitary operator
U :H → L2(Ω) such that

(a) UD(A)=D(Am);
(b) AmUx =UAx , x ∈D(A).

Thus, multiplication operators and self-adjoint operators are just the same thing.
Now recall that an operator A generates a unitary group (i.e., a C0-group of unitary

operators) if and only if iA is self-adjoint. Thus iA is equivalent to a multiplication opera-
tor. This shows in particular that each generator A of a unitary group on H has a bounded
H∞(Σϕ)-calculus for all ϕ > π/2. In fact, it is easy to show that for f ∈H∞(Σϕ) one has

f (A)=U−1Af ◦mU.

5.2.2. Bounded H∞-calculus for m-accretive operators. Recall that an operator A on
a Hilbert space H is called m-accretive if

(a) Re(Ax|x)� 0 for all x ∈D(A);
(b) I +A is surjective.

The Lumer–Phillips theorem asserts that an operator A is m-accretive if and only if
−A generates a contractive C0-semigroup. In particular, if A is m-accretive, then A is
sectorial and ϕsec(A) � π

2 .
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THEOREM. Let A be an m-accretive operator on H . Then A has a bounded
H∞(Σϕ)-calculus for each ϕ > ϕsec(A).

PROOF. Denote by T the semigroup generated by −A. By the dilation theorem [[Dav80],
p. 157] there exist a Hilbert space Ĥ containing H as a closed subspace and a unitary
group U on Ĥ such that

P ◦U(t) ◦ i = T (t), t � 0,

where i :H → Ĥ is the injection of H into Ĥ and P : Ĥ → H is the orthogonal pro-
jection. Denote by Â the generator of U . Then iÂ is selfadjoint. Thus Â has a bounded
H∞(Σϕ)-calculus for any ϕ > π/2. It is easy to see from the definitions that

f (A)= P ◦ f (Â ) ◦ i.
Thus f (A) ∈ L(H) for all f ∈ H∞(Σϕ) (and even ‖f (A)‖ � ‖f (Â)‖ � ‖f ‖L∞(Σπ/2)).
Thus A has a bounded H∞(Σϕ)-calculus for all ϕ > π

2 . Now by McIntosh’s result in
Section 5.1 the H∞(Σϕ)-calculus is also bounded for ϕ > ϕsec(A). �

5.2.3. Equivalence of bounded H∞-calculus and m-accretivity. Let (·|·)1 be an equiva-
lent scalar product on H , i.e., there exist α > 0, β > 0 such that

α‖u‖2
H � (u|u)1 � β‖u‖2

H

for all u ∈H . Of course, having a bounded H∞-calculus is independent of the equivalent
norm on H we choose. Thus, if A is a sectorial operator on H which is m-accretive with
respect to some equivalent scalar product, then A ∈H∞. This describes already the class
of all operators A with bounded H∞-calculus.

THEOREM (Le Merdy [LeM98a]). Let A be an injective, sectorial operator on H such
that ϕsec(A) < π/2. The following are equivalent:

(i) A ∈H∞,
(ii) there exists an equivalent scalar product (·|·)1 on H such that Re(Au|u)1 � 0 for

all u ∈D(A);
(iii) let 0 � ϕ < ϕsec(A); then there exists an equivalent scalar product (·|·)1 on H such

that (Au|u) ∈Σϕ for all u ∈D(A).

Denote by T the C0-semigroup generated by −A. Then (ii) means that∥∥T (t)u
∥∥

1 � ‖u‖1 :=
√
(u|u)1

for all u ∈H , t � 0, and (iii) means that∥∥T (z)u
∥∥

1 � ‖u‖1
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for all u ∈H and z ∈Σπ/2−ϕ .
The proof of Le Merdy [LeM98a] uses the theory of completely bounded operators and

a deep theorem of Paulsen. A more direct proof, based directly on “quadratic estimates”,
is given by Haase [Haa02].

The theorem gives a very satisfying characterization of the boundedness of the
H∞-calculus; see also Section 5.3 for a description by forms. However, it is restricted
to sectorial operators of sectorial type smaller than π/2:

5.2.4. Counterexample. There exists an invertible, sectorial operator A on a Hilbert
space H such that −A generates a bounded C0-semigroup T on H . Moreover, A has
a bounded H∞(Σϕ)-calculus for any ϕ > π/2. But for all ω > 0, A+ ω is not accretive
with respect to any equivalent scalar product.

The counterexample is due to Le Merdy [LeM98a] (based on a famous example of Pisier
solving the Halmos problem) with an additional argument by Haase [Haa02] (taking care
of the case where ω > 0).

5.3. Form methods

A most efficient way to define generators of holomorphic semigroups on a Hilbert space
H is the form method (sometimes it is also called “variational method”).

Let H be a Hilbert space. If V is another Hilbert space we write V ↪→H if V is a sub-
space of H such that the embedding is continuous. We write V ↪→d H if in addition V is
dense in H .

DEFINITION. A closed form on H is a sesquilinear form a :V × V →C which is contin-
uous, i.e., ∣∣a(u, v)∣∣� M‖u‖V ‖v‖V , u, v ∈ V, (5.1)

for some M � 0 and elliptic, i.e.,

Rea(u,u)+ω‖u‖2
H � α‖u‖2

V , u ∈ V, (5.2)

for some ω ∈R, α > 0. The space V is called the domain of a.

Properly speaking, a closed form is a couple (a,V ) with the properties stipulated in the
above definition. Note that by (5.2),

‖u‖a :=
(
Rea(u,u)+ω‖u‖2

H

)1/2

defines an equivalent norm on V . Sometimes we will write D(a) instead of V and will use
the norm ‖ · ‖a on D(a) for which D(a) is complete by hypothesis.
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REMARK. Let a :D(a) × D(a)→ C be sesquilinear, where D(a) is a subspace of H .
Assume that a is bounded below, i.e.,

‖u‖2
a := Rea(u,u)+ω‖u‖2

H � ‖u‖2
H

for all u ∈D(a) and some ω ∈R. Then ‖ · ‖a defines a norm on D(a). The form is contin-
uous with respect to this norm if and only if a(u,u) ∈ ω1 +Σθ for some ω1 ∈R and some
θ ∈ (0,π/2], i.e., if and only if the form a is sectorial in the terminology of Kato [[Kat66]].

5.3.1. The operator associated with a closed form. Let a be a closed form on H with
dense domain V . Then we associate an operator A with a, given by

D(A)= {u ∈ V : ∃v ∈H such that a(u,ϕ)= (v|ϕ)H for all ϕ ∈ V
}
,

Au= v.

Note that v is well defined since V is dense in H . We call A the operator associated
with a. It is not difficult to see that A + ω is sectorial with angle ϕsec(A + ω) < π/2.
Moreover, A + ω is m-accretive (where ω is the constant occurring in (5.2)). Thus we
obtain the following.

THEOREM. Let A be an operator associated with a closed form. Then there exists ω ∈ R

such that A+ω ∈H∞.

5.3.2. Example: self-adjoint operators. Let a be a densely defined closed form on H

with domain V . Assume that a is symmetric; i.e., a(u, v) = a(v,u) for all u,v ∈ V . Let
A be the operator associated with a. Then A is bounded below (i.e., (Au|u) � −ω‖u‖2

H

for all u ∈D(A) and some ω ∈ R) and self-adjoint. Conversely, let A be a self-adjoint
operator which is bounded below. Then A is associated with a densely defined symmetric
closed form.

We give a classical concrete example right now. Later we will study elliptic operators in
more detail.

5.3.3. Example (The Laplacian with Dirichlet and with Neumann boundary conditions).
Let Ω ⊂ Rn be open and H = L2(Ω). Let W 1,2(Ω) := {u ∈ L2(Ω): Dju ∈ L2(Ω),
j = 1, . . . , n} be the first Sobolev space and let W 1,2

0 (Ω) be the closure of the space D(Ω)

of all test functions in W 1,2(Ω). Define a :W 1,2(Ω)×W 1,2(Ω)→C by

a(u, v)=
∫
Ω

∇u∇v dx.

(a) Let V =W
1,2
0 (Ω). Then a is a closed symmetric form. Denote by −�D

Ω the oper-

ator associated with a. Then it is easy to see that D(�D
Ω)= {u ∈W

1,2
0 (Ω): �u ∈L2(Ω)},

�D
Ωu=�u, in D(Ω)′. We call �D

Ω the Dirichlet Laplacian on L2(Ω).
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(b) Let V = W 1,2(Ω). Then a is closed and symmetric. Denote by −�N
Ω the op-

erator associated with a. Then �N
Ω is a self-adjoint operator, called the Neumann

Laplacian. This can be justified if Ω is bounded with Lipschitz boundary. Then
D(�N

Ω)= {u ∈W 1,2(Ω): �u ∈L2(Ω); ∂u
∂v
= 0 weakly}, where the weak sense has to be

explained. We omit the details. And indeed, for many purposes it is not important to know
in which sense the Neumann boundary condition ∂u

∂v
= 0 is realized. The interesting point

is that the Neumann–Laplacian can be defined for arbitrary open sets without using the
normal derivative.

5.3.4. Characterization of operators defined by forms. Let A be an operator on H .
We say that A is induced by a form, if there exists a densely defined closed form a on H

such that A is associated with a. It is easy to describe such operators by an accretivity-
condition.

THEOREM [[Kat66]]. Let A be an operator on H . The following are equivalent:
(i) A is induced by a form;

(ii) there exist ω ∈R and 0 < θ < π
2 such that

(a) (ω+A)D(A)=H ;
(b) e±iθ (ω+A) is accretive.

(iii) −A generates a holomorphic C0-semigroup T of angle θ ∈ (0, π
2 ) such that for

some ω ∈R,∥∥T (z)
∥∥� eω|z|, z ∈Σθ ;

(iv) the numerical range W(A) := {(Ax|x): x ∈ D(A),‖x‖ = 1} is contained in
Σθ +ω for some θ ∈ (0,π/2), ω ∈R and (−∞,ω)∩ ρ(A) �= ∅.

Property (ii) is sometimes formulated by saying that A is strongly quasi-m-accretive
(and strongly m-accretive if ω= 0).

5.3.5. Changing scalar products. Let a :V × V → C be a closed densely defined form
on H . The definition of the associated operator A depends on the scalar product on H .
Let (·|·)1 be another equivalent scalar product on H . Then there exists a self-adjoint oper-
ator Q ∈ L(H) such that

(Qu|v)1 = (u|v) for all u,v ∈H,

and Q is strictly form-positive. By this we mean that (Qu|u) � ε‖u‖2
H for all u ∈ H and

some ε > 0. Let u ∈D(A). Then u ∈ V and a(u,ϕ)= (Au|ϕ)= (QAu|ϕ)1 for all ϕ ∈ V .
This shows that the operator A1 associated with a on (H, (·|·)1) is given by A1 =QA. With
the help of Le Merdy’s theorem in Section 5.2.3 one obtains the following characterization
of the class H∞.

THEOREM [ABH01]. Let A be an operator on H . The following are equivalent:
(i) A+ω ∈H∞ for some ω � 0;
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(ii) there exists an equivalent scalar product (·|·)1 on H such that A is induced by
a form on (H, (·|·)1);

(iii) there exists a strictly form-positive self-adjoint operator Q ∈ L(H) such that QA

is induced by a form.

We remark that the rescaling A+ ω is needed to obtain a sectorial operator. From Sec-
tion 4.6 we know that for an invertible sectorial operator A and ω > 0 one has

A ∈H∞ if and only if A+ω ∈H∞.

5.3.6. More on equivalent scalar products. In the Section 5.3.5 we characterized those
operators A which come from a form on (H, (·|·)1) for some equivalent scalar product.
What happens if we replace “some” by “all ”?

THEOREM (Matolcsi [Mat03]). Let A be an operator on H . The following are equivalent:
(i) A is bounded;

(ii) for each equivalent scalar product (·|·)1 on H , the operator A is induced by a form
on (H, (·|·)1).

5.4. Form sums and Trotter’s product formula

There is a natural way to define the sum of closed forms leading to a closed form again.
Here we want to allow also nondense form domains. Let H be a Hilbert space.

5.4.1. Closed forms with nondense domain. We define closed forms on H as before but
omit the assumption that the form domain be dense in H . Thus, a closed form a on H

is a sesquilinear form a :D(a)× D(a)→ C, where D(a) is a subspace of H (the form
domain) such that, for some ω ∈R, α ∈ [0,π/2):

(a) a(u,u)+ (ω− 1)‖u‖2
H ∈Σα , u ∈D(a);

(b) (D(a),‖ · ‖a) is complete, where ‖u‖2
a = Rea(u,u)+ω‖u‖2

H .
Then one can show that a is a continuous sesquilinear form on V = (D(a),‖ · ‖a). Thus
(5.1) and (5.2) are satisfied.

Denote by A the operator on D(a) (the closure of D(a) in H ) associated with a. Then
−A generates a holomorphic C0-semigroup (e−tA)t�0 on D(a). We extend this semigroup
by 0 to H defining

e−tax :=
{

e−tAx if x ∈D(a),

0 if x ∈D(a)⊥,
(5.3)

for t > 0 and letting e−0a the orthogonal projection onto D(a). Then t �→ e−ta :
[0,∞)→ L(H) is strongly continuous and satisfies the semigroup property

e−tae−sa = e−(t+s)a, t, s � 0.
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We call (e−ta)t�0 the semigroup on H associated with the closed form a. Before giving
examples we consider form sums.

5.4.2. Form sums. Now let a and b be two closed forms on H . Then D(a) ∩ D(b) is
a Hilbert space for the norm (‖u‖2

a + ‖u‖2
b)

1/2. Hence, a + b with domain D(a + b) =
D(a)∩D(b) is a closed form again.

THEOREM. Let a and b be two closed forms on H . Then Trotter’s formula

e−t (a+b)x = lim
n→∞

(
e−(t/n)ae−(t/n)b

)n
x (5.4)

holds for all x ∈H , t � 0.

This result is due to Kato [Kat78] for the case of symmetric forms and it was generalized
to closed forms by Simon (see [Kat78], Theorem and Addendum).

It is interesting that this result can be applied in particular when e−tb ≡ P , where P is
an orthogonal projection. This is done in the following section.

5.4.3. Induced semigroups. Let a be a closed form on H . Let H1 be a closed subspace
of H . Even if H1 is not invariant under (e−ta)t�0 there is a natural induced semigroup
on H1. In fact, let D(b) = H1 and b ≡ 0. Then e−tb ≡ P , the orthogonal projection
onto H1. Thus by Trotter’s formula (5.4),

e−ta1x = lim
n→∞

(
e−ta/nP

)n
x (5.5)

converges for all x ∈ H , where D(a1) = D(a) ∩ H1 and a1(u, v) = a(u, v) for all
u,v ∈D(a1). Then (e−ta1)t�0 is a C0-semigroup on H1 if and only if D(a)∩H1 is dense
in H1.

5.4.4. Nonconvergence of Trotter’s formula. Before giving a concrete example we want
to point out that this way to induce a semigroup on closed subspaces via (5.5) does not
work for arbitrary contraction semigroups.

THEOREM (Matolcsi [Mat03]). Let−A be the generator of a contraction C0-semigroup T

on H . The following assertion are equivalent:
(i) A is induced by a form;

(ii) limn→∞(T (t/n)P )nx converges for each t > 0, x ∈H , and each orthogonal pro-
jection P .

5.4.5. From the Gaussian semigroup to the Dirichlet Laplacian. Denote by G the
Gaussian semigroup on L2(Rn), i.e.,

G(t)f (x)= (4πt)−n/2
∫

Rn

e−(x−y)2/4tf (y)dy
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for all t > 0, f ∈ L2(Rn), x ∈ Rn. Then G is associated with the form a(u, v) =∫
Rn ∇u∇v dx with domain D(a)=W 1,2(Rn). Now let Ω ⊂ Rn be an open subset of Rn.

We identify L2(Ω) with the space {f ∈ L2(Rn): f (x) = 0 a.e. on Ωc}. Then the or-
thogonal projection P onto L2(Ω) is given by Pf = 1Ωf for all f ∈ L2(Rn). Now let
W

1,2
0 (�Ω) = W 1,2(Rn) ∩ L2(Ω) = {u ∈ W 1,2(Rn): u(x) = 0 a.e. on Ωc}. Consider the

form b on W
1,2
0 (�Ω) given by b(u, v)= ∫

Ω
∇u∇v. Then, by (5.5), we have

e−tbf = lim
n→∞

(
G(t/n)1Ω

)n
f (5.6)

for all f ∈ L2(Rn). Now we consider the more familiar space W
1,2
0 (Ω). For u ∈W

1,2
0 (Ω)

let ũ(x)= u(x) for x ∈Ω and ũ(x)= 0 for x ∈Ωc. Then ũ ∈W
1,2
0 (�Ω) and Dj ũ= D̃ju.

Thus we may identify W
1,2
0 (Ω) with a subspace of W 1,2

0 (�Ω). One says that Ω is stable, if

W
1,2
0 (Ω)=W

1,2
0 (�Ω). For example, if Ω has Lipschitz boundary, then Ω is stable. Thus

Ω is stable if and only if (e−tb)t�0 is the semigroup generated by the Dirichlet Laplacian
with the canonical extension to L2(Rn), i.e.,

(
e−tbf

)
(x)=

{(
et�

D
Ωf
∣∣
Ω

)
(x), x ∈Ω ,

0, x /∈Ω .

Thus, if Ω is stable, then the semigroup generated by the Dirichlet Laplacian is obtained
from the Gaussian semigroup via Trotter’s formula (5.6).

Stable open sets can be characterized as follows. Let Ω be an open, bounded set in Rn.
We assume that the boundary ∂Ω of Ω is a null-set (for the n-dimensional Lebesgue

measure), and that
◦�Ω =Ω . By

cap(A)= inf
{‖u‖2

H 1 : u ∈H 1(Rn
)
, u � 1, a.e. in a neighborhood of A

}
we denote the capacity of a subset A of Rn.

THEOREM. The following assertions are equivalent.
(i) W

1,2
0 (Ω)=W

1,2
0 (�Ω);

(ii) cap(G \ �Ω)= cap(G \Ω) for every open set G⊂Rn;
(iii) for each function u ∈ C(�Ω), which is harmonic on Ω , there exist un harmonic on

an open neighborhood of �Ω which converge to u uniformly on �Ω as n→∞.

It is interesting that these properties do not imply Dirichlet regularity. In fact, if Ω is the
Lebesgue cusp, then W

1,2
0 (Ω)=W

1,2
0 (�Ω). References: [Hed93] and [Kel66].
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5.5. The square root property

Let H be a Hilbert space. During this section we consider a continuous sesquilinear form
a :V × V →C which is coercive with respect to H , i.e.,

Rea(u,u) � ν‖u‖2
V , u ∈ V,

where V ↪→d H and ν > 0. This means that the ellipticity condition (5.2) is satisfied
for ω = 0. We consider the operator A on H which is associated with a. Thus A is a sec-
torial operator and 0 ∈ ρ(A).

5.5.1. The square root property. We say that the operator A (or the form a) has the square
root property if V =D(A1/2). It is easy to see that this is the case if a is symmetric (see the
Example below). But an example of McIntosh [McI82] shows that the square root property
does not hold for all closed, coercive forms. Here is an easy characterization of the square
root property.

PROPOSITION. The following are equivalent:
(i) D(A1/2)= V ,

(ii) D(A∗1/2)= V ,
(iii) D(A1/2)=D(A∗1/2).

In that case the three norms ‖ · ‖V , ‖A1/2x‖ and ‖A∗1/2x‖ are equivalent. This is an im-
mediate consequence of the Closed Graph theorem since all three spaces are continuously
embedded into H . Of course one may also ask whether (iii) is valid for other powers α

than α = 1
2 . Surprisingly, by a result of Kato [[Kat66]] one always has

D
(
Aα
)=D

(
A∗α

)
for all 0 < α < 1

2 for each m-accretive operator. Thus α = 1
2 is the critical power for which

things may go wrong.

5.5.2. Induced operators on V and V ′. Since V ↪→d H , we may identify H with a sub-
space of V ′. Indeed, given x ∈H , we define jx ∈ V ′ by jx(y)= (x|y)H . Then j :H → V ′,
x �→ jx is linear, continuous and has dense image. We will identify x and jx so that

V ↪→
d

H ↪→
d

V ′.

By the Lax–Milgram theorem, there is an isomorphism AV ′ :V → V ′ given by 〈AV ′u,v〉 =
a(u, v), u,v ∈ V . Here V ′ denotes the space of all continuous, anti-linear forms on V

(i.e., V ′ = {ϕ̄: ϕ ∈ V ∗}, V ∗ the dual space of V ). The operator −AV ′ generates a
bounded holomorphic C0-semigroup TV ′ on V ′ (see [[Tan79], Section 3.5]). Moreover,
TV ′(t)|H = T (t), the semigroup generated by −A on H and, clearly, A is the part of AV ′
in H . Finally, the part of AV ′ in V , i.e., the operator AV given by AV u = Au with do-
main D(AV )= {u ∈D(A): Au ∈ V } is similar to AV ′ and −AV generates a holomorphic
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C0-semigroup TV which is the restriction of T to V . Thus, AV and AV ′ are always similar;
but AV and A are not, unless A has the square root property:

THEOREM. The following are equivalent:
(i) D(A1/2)= V ;

(ii) AV ∈H∞;
(iii) AV ′ ∈H∞;
(iv) AV and A are similar.

Thus, one can describe the square root property by the boundedness of the H∞-calculus
of AV (or AV ′).

Before giving a proof of the Theorem we determine the diverse notions in the case of
self-adjoint operators.

EXAMPLE (Self-adjoint operators). Assume that the form a defined at the beginning of the
section is symmetric. Then the associated operator A is self-adjoint. Thus, by the spectral
theorem, we may assume that H = L2(Ω,Σ,μ) and Au = m · u, D(A) = {u ∈ L2(Ω):
mu ∈ L2(Ω)}, where m :Ω → [ν,∞) is measurable. Then V = L2(Ω,mdμ) and
a(u, v) = ∫

ω
muv̄ dμ. Moreover, V ′ = L2(Ω,1/mdμ) and 〈u,v〉 = ∫

Ω
uv̄ dμ for all

u ∈ V ′, v ∈ V . The operator AV ′ is given by D(AV ′) = V = L2(Ω,mdμ), AV ′u = mu,
and AV is given by AV u=mu with domain D(AV )= {u ∈ V : mu ∈ V } = L2(Ω,m3 dμ).
Now, A−α is a bounded operator on H given by A−αu = m−αu. Thus D(Aα) =
{m−αu: u ∈ L2(Ω)} = L2(Ω,m2α dμ). It is clear that D(Aα) = [H,D(A)]α for all
0 < α < 1.

REMARK (Definition of the complex interpolation space). Let V ↪→d H . It is possible
to define the complex interpolation spaces with help of the spectral theorem. Indeed,
a(u, v) = (u|v)V defines a continuous, coercive form on V . Then we can assume that
V = L2(Ω,mdμ) and H = L2(Ω,dμ). Then [H,V ]α = L2(Ω,mα dμ) for 0 < α < 1,
where [H,V ]α denotes the complex interpolation space.

PROOF OF THE THEOREM. The operator A−1/2 :H → D(A1/2) is an isomorphism. If
V = D(A1/2), then AV = A−1/2AA1/2, i.e., A and AV are similar. This shows that
(i) ⇒ (iv). Since A ∈ H∞, (iv) implies (ii). And (ii) implies (iii) since AV and AV ′
are always similar. Finally we show that (iii) implies (i). From the previous remark it
is clear that H = [V ′,V ]1/2. Now if AV ′ ∈ H∞, then, by Section 4.4.10, D(A

1/2
V ′ ) =

[V ′,D(AV ′)]1/2 = [V ′,V ]1/2 =H , i.e., H =A
−1/2
V ′ (V ′). This implies that

D
(
A1/2)=A−1/2H =A−1

V ′
(
V ′
)= V. �

5.6. Groups and cosine functions

In the preceding sections we have characterized those sectorial operators A on a Hilbert
space with sectorial angle ϕsec(A) < π/2 which have a bounded H∞-calculus. This is
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equivalent to saying that A is defined by a closed form on (H, (·|·)1) for some equiva-
lent scalar product (·|·)1. Now we will see that squares of group generators are always of
this form.

5.6.1. Groups on Hilbert spaces. Let U be a bounded C0-group on a Hilbert space H .
Then, by a classical result of Sz.-Nagy, there exists an equivalent scalar product (·|·)1 on H

such that the group is unitary in (H(·|·)1). Concerning arbitrary C0-groups the following
holds (see, e.g., [Haa03a]).

PROPOSITION. Let B be the generator of a C0-group on H . Then there exists a bounded
operator C on H such that B +C generates a bounded C0-group.

Thus, on Hilbert space, up to equivalent scalar product, each generator of a C0-group
B is of the form

B = iB0 +C,

where B0 is self-adjoint and C bounded.

5.6.2. Squares of generators of C0-groups. Let B be the generator of a C0-group. Then
B2 generates a holomorphic C0-semigroup of angle π/2. Thus, for each 0 < θ < π/2,
there exists ω ∈R such that −B2 +ωI is sectorial and ϕsec(−B2 +ωI) < θ .

THEOREM (Haase [Haa03a]). Let A=−B2, where B generates a C0-group on a Hilbert
space. Then there exists ω ∈R such that A+ω ∈H∞.

Operators of the form B2 − ω with B a group generator are the same as generators
of cosine functions. This holds in Hilbert spaces, and more generally on UMD-spaces.
We describe these facts, starting on arbitrary Banach spaces first and concluding with the
square root property.

5.6.3. Cosine functions. Let X be a Banach space. A cosine function on X is a strongly
continuous function C : R→L(X) satisfying

2C(t)C(s)= C(t + s)+C(t − s), s, t ∈R, C(0)= I.

In that case there exist M � 1, ω ∈R such that∥∥C(t)
∥∥� Meωt , t � 0.

Moreover, there is a unique operator A such that (ω,∞)⊂ ρ(A) and

λR
(
λ2,A

)
x =

∫ ∞

0
e−λtC(t)x dt
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for all x ∈X, λ > ω. We call A the generator of C. The cosine function C generated by A

governs the second-order Cauchy problem defined by A{
ü(t)=Au(t), t ∈R,

u(0)= x, u̇(0)= y.
(5.7)

We will make this more precise. Introducing the function v = u̇, problem (5.7) can be
reformulated by(

u

v

)′
=
(

0 I

A 0

)(
u

v

)
, u(0)= x, v(0)= y.

However, the operator
(0 I
A 0

)
with domain D(A)×X generates a C0-semigroup on X×X

if and only if A is bounded (see [[ABHN01], Section 3.14.9]). Thus, another space than
X×X has to be considered.

THEOREM [[ABHN01], Section 3.14.11]. Let A be an operator on a Banach space X.
The following assertions are equivalent:

(i) A generates a cosine function;
(ii) there exists a Banach space W such that D(A)⊂W ↪→X, and the operator

A=
(

0 I

A 0

)
with domain D(A)×W generates a C0-semigroup on W ×X.

In that case the Banach space W is uniquely determined by property (ii). We call
W ×X the phase space of problem (5.7). The phase space is important to produce classical
solutions:

PROPOSITION [[ABHN01], Section 3.14.12]. Let A be the generator of a cosine function,
with phase space W ×X. Then, for each x ∈D(A), y ∈W , there exists a unique solution
u ∈ C2(R,X) ∩C(R,D(A)) of (5.7).

So far we have described well-posedness of the second-order Cauchy problem (5.7) in
arbitrary Banach spaces. Now we come back to the initial subject of this section.

5.6.4. Squares of group generators and cosine functions. On UMD-spaces one has the
following characterization.

THEOREM (Fattorini [[ABHN01], Section 3.16.8]). Let A be an operator on a UMD-spa-
ce X. The following assertions are equivalent:

(i) A generates a cosine function;



48 W. Arendt

(ii) there exist a generator B of a C0-group on X and ω � 0 such that

A= B2 +ωI.

In that case, the phase space is D(B)×X, where D(B) carries the graph norm.

This theorem explains why Lp-spaces for p �= 2 are not so good as functional frame-
work for hyperbolic problems: There are not many groups operating on Lp for p �= 2. For
example, the Laplacian � generates a cosine function on Lp(Rn) if and only if p = 2
or n = 1. On the other hand, on Hilbert spaces there are many C0-groups since there are
many self-adjoint operators. This explains from an abstract point of view why many exam-
ples of well-posed second-order problems exist on Hilbert space (see Section 8.9). In view
of the results mentioned so far, they all are related to self-adjoint operators.

5.6.5. Forms and cosine functions. Let H be a Hilbert space. If −A generates a co-
sine function, then it follows from Sections 5.6.4 and 5.6.2 that A+ ω ∈H∞ for ω large
enough. Thus, after changing the scalar product on H , the operator A is associated with
a closed form. Now let us assume that A is associated with a coercive, continuous form
a :V × V →C, where V ↪→d H . Assume in addition that −A generates a cosine function.
Then by Fattorini’s theorem [[ABHN01], Section 3.16.7] B = iA1/2 generates a C0-group.
Thus, the phase space is D(A1/2)×H . Now it becomes apparent why the square root prop-
erty is interesting in this context. The given known space is V (for example in applications,
V may be a Sobolev space). One would like to know whether V ×H is the phase space of
the second-order Cauchy problem.

5.6.6. Numerical range in a parabola. If A is an operator on a Hilbert space, then
A comes from a form if and only if the numerical range of A

W(A)= {(Ax|x)H : x ∈D(A),‖x‖ = 1
}

is contained in a sector Σθ + ω for some ω ∈ R, θ ∈ [0,π/2) and (−∞,ω) ∩ ρ(A) �= ∅
(see Section 5.3.4). Now assume that −A is the generator of a cosine function. Then the
spectrum σ(A) is contained in a parabola

Pω =
{
ξ + iη ∈C: ξ � ω2 − η2/4ω2}

for some ω ∈ R [[ABHN01], Section 3.14.18]. Recall that σ(A) ⊂ W(A) by [[Kat66],
Section V.3.2].

THEOREM (McIntosh [McI82], Theorems A and C). Let a be a closed densely defined
form on H with associated operator A. Assume that the numerical range W(A) of A is
contained in a parabola Pω for some ω ∈R. Then A has the square root property.

Generators of cosine functions can be characterized by a real condition on the resolvent
[[ABHN01], Section 3.15.3] which is however of little practical use. Much more interesting
is the following most remarkable new criterion:



Semigroups and evolution equations: Functional calculus, regularity and kernel estimates 49

THEOREM (Crouzeix [Cro03]). Let a :V × V → C be a closed densely defined form on
a Hilbert space H such that

a(u,u) ∈ Pω, u ∈ V,‖u‖H = 1,

for some ω ∈R. Then the associated operator generates a cosine function.

Haase [Haa03a], Corollary 5.18, proved that also the converse implication holds: If
A generates a cosine function on a Hilbert space, then there exist an equivalent scalar
product (·|·)1 on H , a closed form a : V × V → C on H with V ↪→d H such that −A is
associated with the form a on (H, (·|·)1) and

a(u,u) ∈ Pω, u ∈ V,‖u‖H = 1,

for some ω ∈ R. Thus, in view of Section 5.3.4 we can formulate the following beautiful
characterization.

COROLLARY. Let A be an operator on a Hilbert space H . The following assertions are
equivalent:

(i) A generates a cosine function;
(ii) there exists an equivalent scalar product (·|·)1 on H and ω ∈R such that

−(Au|u)1 ∈ Pω, u ∈D(A),‖u‖H = 1,

and ρ(−A)∩Pω �= ∅.

6. Fourier multipliers and maximal regularity

The Fourier transform is a classical tool to treat differential equations. In order to apply
it to partial differential equations, vector-valued functions have to be considered. Prob-
lems of regularity, but also of asymptotic behavior, can frequently be reformulated as the
question whether a certain operator is an Lp-Fourier multiplier. Michlin’s theorem gives
a most convenient criterion for this. It was Weis [Wei00a] (after previous work by Clément
et al. [CPSW00]) who discovered the right formulation of Michlin’s theorem in the vector-
valued case.

We describe the situation in the periodic case which is technically easier, and ideas
become more transparent in this case. Still, the periodic case leads to the main application,
namely characterization of maximal regularity for the nonhomogeneous Cauchy problem.

6.1. Vector-valued Fourier series and periodic multipliers

It was the study of the heat equation which lead Fourier to the introduction of one of the
most fundamental concepts of Analysis. In the same spirit, vector-valued Fourier series
help us to understand arbitrary abstract evolution equations.
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Let X be a Banach space. For 1 � p �∞ denote by L
p
2π := L

p
2π (X) the space of all

equivalence classes of 2π -periodic measurable functions f : R→X such that

‖f ‖Lp
2π
:=
(∫ 2π

0

∥∥f (t)
∥∥p dt

)1/p

<∞,

if 1 � p <∞, and such that

‖f ‖L∞2π = ess sup
t∈R

∥∥f (t)
∥∥<∞,

where functions are identified if they coincide a.e. Then L
p

2π is a Banach space and
L

p

2π ↪→ L1
2π , 1 � p �∞. For f ∈L1

2π , denote by

f̂ (k)= 1

2π

∫ 2π

0
e−iktf (t)dt

the kth Fourier coefficient of f , where k ∈ Z. The Fourier coefficients determine the func-
tion f ; i.e.,

f̂ (k)= 0 for all k ∈ Z if and only if f (t)= 0 a.e. (6.1)

DEFINITION. Let 1 � p �∞. A sequence (Mk)k∈Z ⊂ L(X) is an L
p

2π -multiplier if, for
each f ∈ L

p

2π(X), there exists a function g ∈L
p

2π(X) such that

Mkf̂ (k)= ĝ(k), k ∈ Z.

In that case, by the closed graph theorem, the mapping M := (f �→ g) defines a
bounded linear operator from L

p

2π(X) into L
p

2π(X), which we call the operator associ-
ated with (Mk)k∈Z.

Let ek(t) = eikt , t ∈ R, k ∈ Z, and for x ∈X, denote by ek ⊗ x the function t �→ eiktx .
Linear combinations of such functions are called trigonometric polynomials. By Fejér’s
theorem [[ABHN01], Theorem 4.2.19], the space of all trigonometric polynomials is dense
in L

p

2π(X). Note that the associated operator M acts on trigonometric polynomials by

M

m∑
k=−m

ek ⊗ xk =
m∑

k=−m

ek ⊗Mkxk. (6.2)

6.1.1. Multipliers on Hilbert spaces. If H is a Hilbert space, then the Fourier transform
f �→ f̂ is an isometric isomorphism of L2

2π(H) onto �2(H) (the space of all sequences
(xk)k∈Z in �2(H) such that

∑
k∈Z

‖xk‖2 <∞). This follows easily from the scalar case by
considering an orthonormal basis of H . As a consequence, if H is a Hilbert space, then a
sequence (Mk)k∈Z ⊂ L(H) is an L2

2π -multiplier if and only if it is bounded. If 1 <p <∞
and p �= 2, then multipliers can no longer be characterized in a satisfying way, even in
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the scalar case. An important subject of harmonic analysis is to find sufficient conditions.
In the scalar case the following is a special case of Marcinkiewicz’ multiplier theorem.
We state it on Hilbert space (where it is a special case of the Theorem in Section 6.1.5).

THEOREM. Let H be a Hilbert space and let (Mk)k∈Z ⊂ L(H) be a bounded sequence
satisfying

sup
k∈Z

∥∥k(Mk+1 −Mk)
∥∥<∞. (M1)

Then (Mk)k∈Z is an L
p

2π -multiplier for 1 <p <∞.

6.1.2. Characterization of Hilbert spaces. Even if p = 2, the Theorem in Section 6.1.1
does no longer hold for Banach spaces other than Hilbert space.

THEOREM. Let X be a Banach space and let 1 < p <∞. Assume that each bounded
sequence (Mk)k∈Z ⊂ L(X) satisfying (M1) is an L

p
2π -multiplier. Then X is isomorphic to

Hilbert space.

An explicit proof of this theorem is given in [ArBu03b], Proposition 1.17. It is based on
a deep characterization of Hilbert spaces due to Kwapien. It was Pisier (unpublished) who
had discovered that certain classical operator-valued multiplier theorems hold merely on
Hilbert spaces.

6.1.3. UMD-spaces and the Riesz-projection. In order to obtain an operator-valued mul-
tiplier result one has to replace boundedness in operator norm in (M1) by a stronger as-
sumption (R-boundedness), and a restricted class of Banach spaces has to be considered.

DEFINITION. Let X be a Banach space. For k ∈ Z, let

Mk =
{
I if k � 0,

0 if k < 0.
(6.3)

We say that X is a UMD-space if the sequence (Mk)k∈Z is an L
p

2π(X)-multiplier for all
(equivalently one) p ∈ (1,∞). The associated operator R is called the Riesz-projection.
Note that the sequence (6.3) satisfies condition (M1) of Section 6.1.1.

The letters UMD stay for “unconditional martingale differences” and refer to an equiv-
alent property introduced and studied by Burkholder [Bur83]. Here we will not be con-
fronted with martingales and use the term UMD just for saying that the Riesz-projection is
bounded.

EXAMPLES. (a) The space Lq(Y ) is a UMD-space if 1 < q <∞ for any σ -finite measure
space (Y,Σ,μ).

(b) Every closed subspace of a UMD-space is a UMD-space.
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(c) Each UMD-space is reflexive (even superreflexive).
(d) It follows from (a)–(c) that, for any nonempty open subset Ω of Rn, the Sobolev

space Wk,p(Ω) is a UMD-space if and only if 1 <p <∞, where k ∈N0.
(e) If Ω ⊂Rn is a nonempty open bounded set, then C(�Ω) is not a UMD-space.

6.1.4. R-boundedness. In order to formulate an operator-valued version of Marcinkie-
wicz’s theorem we need a new notion of boundedness for sets of operators. Recall that
a series

∑∞
k=1 xk in a Banach space is called unconditionally convergent if the series∑∞

k=1 εkxk converges for any choice of signs (εk)k∈N ∈ {−1,1}N. This implies conver-
gences of

∑∞
k=1 αkxk for each α = (αk)k∈N ∈ �∞. But in general, this does not imply that∑∞

k=1 ‖xk‖<∞, unless X is finite dimensional. We introduce the means over all signs

∥∥(x1, . . . , xn)
∥∥
R
:= 1

2n

∑
ε∈{−1,1}n

∥∥∥∥∥
n∑

j=1

εjxj

∥∥∥∥∥. (6.4)

DEFINITION. Let X,Y be Banach spaces. A subset T of L(X,Y ) is called R-bounded if
there exists a constant c � 0 such that∥∥(T1x1, . . . , Tnxn)

∥∥
R

� c
∥∥(x1, . . . , xn)

∥∥
R

(6.5)

for all T1, . . . , Tn ∈ T , x1, . . . , xn ∈X, n ∈N. The least constant c such that (6.5) is satis-
fied is called the R-bound of T and is denoted by R(T ).

The notion of R-boundedness was introduced by Berkson and Gillespie [BG94], where
the “R” stands for ‘Riesz’. Since the mean∥∥(x1, . . . , xn)

∥∥
R

can be expressed in terms of Rademacher functions some pronounce it “Rademacher
bounded”. Finally, the Rademacher functions may be replaced by other independent ran-
dom variables which leads some to use “randomized boundedness”. In any case, it is some
sort of unconditional boundedness.

R-boundedness clearly implies boundedness. But if X = Y , the notion of R-bounded-
ness is strictly stronger than boundedness unless the underlying space is a Hilbert space
[ArBu02], Proposition 1.17.

6.1.5. The operator-valued Marcinkiewicz theorem. On an arbitrary Banach space, in
general it is a difficult task to verify R-boundedness (we will come back to this point
later). Nevertheless, for multipliers it is the right notion as the following two results show.
First of all, we state that it is a necessary condition.

PROPOSITION ([ArBu02], [CP01]). Let (Mk)k∈Z ⊂ L(X) be an L
p
2π -multiplier for some

1 < p <∞. Then the set {Mk: k ∈ Z} is R-bounded.
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If in Marcinkiewicz’s theorem we replace boundedness by R-boundedness, the theorem
remains true on UMD-spaces (see [ArBu02], Theorem 1.3).

THEOREM (The operator-valued Marcinkiewicz theorem). Let X be a UMD-space. Let
(Mk)k∈Z ⊂ L(X) be R-bounded. Assume that{

k(Mk+1 −Mk): k ∈ Z
}

is R-bounded. Then (Mk)k∈Z is an L
p
2π -multiplier whenever 1 < p <∞.

We remark that a set of scalar operators (i.e., operators of the form c · I , where c ∈ C)

is bounded if and only if it is R-bounded. In that case, the Theorem had been proved by
Clément, de Pagter, Sukochev and Witvliet [CPSW00]. It was Weis [Wei00a] who proved
the first operator-valued multiplier theorem on UMD-spaces, namely the operator-valued
version of Michlin’s theorem on the real line.

6.1.6. The variational Marcinkiewicz’ condition. Finally we state the original, more gen-
eral version of Marcinkiewicz’s theorem. It holds in Hilbert spaces as was shown by
Schwartz [Schw61].

THEOREM. Let X be a Hilbert space and let (Mk)k∈Z ⊂ L(X) be a bounded sequence
satisfying

sup
n∈N

∑
2n−1�|k|<2n

‖Mk+1 −Mk‖<∞. (MV)

Then (Mk)k∈Z is an L
p

2π -multiplier for 1 <p <∞.

We call (MV) the variational Marcinkiewicz condition. There is a version on UMD-spa-
ces due to Strkalj and Weis [SW00]. But the “R-version” of being of uniform bounded
variation on dyadic intervals is more complicated to formulate.

Finally we mention a remarkable difference between the variational Marcinkiewicz con-
dition and the stronger condition (M1) of Section 6.1.1. In the scalar case, if (M1) is sat-
isfied the associated operator is of weak type (1,1). This does not hold, if merely the more
general condition (MV ) is satisfied (see Fournier’s example [[EG77], Section 7.5]).

6.2. Maximal regularity via periodic multipliers

Let A be a closed operator and let τ > 0. For f ∈ L1((0, τ );X) and x ∈ X we consider
the problem

Px(f )

{
u′(t)=Au(t)+ f (t), t ∈ [0, τ ],
u(0)= x.
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6.2.1. Mild and strong Lp-solutions. Recall the notion of mild solution of Px(f )

given in Section 1.5. We now define a stronger notion of solution. Let 1 � p < ∞.
By W 1,p((0, τ );X) we denote the space of all u ∈ C([0, τ ];X) such that there exists
u′ ∈ Lp((0, τ );X) such that

u(t)= u(0)+
∫ t

0
u′(s)ds, t ∈ [0, τ ]. (6.6)

Then u′(t) is the derivative of u a.e. Let f ∈ Lp((0, τ );X). A strong Lp-solution u

of Px(f ) is a function u ∈ W 1,p((0, τ );X) ∩ Lp((0, τ );D(A)) such that u(0) = x and
u′(t) = Au(t) + f (t) a.e. on (0, τ ). Each strong solution is also a mild solution. Con-
versely, since A is closed, a mild solution u of Px(f ) is a strong Lp-solution if and only
if u ∈W 1,p((0, τ );X). Now assume that A is the generator of a C0-semigroup T . Then,
by Section 1.5, u= T (·)x + T ∗ f is the unique mild solution of Px(f ). Thus, we are lead
to investigate under which conditions T (·)x ∈ W 1,p((0, τ );X). We start to consider the
case f = 0.

6.2.2. An interpolation space and strong Lp-solutions of the homogeneous problem. Let
X,Y be Banach spaces such that Y ↪→X. For 1 <p <∞ one may define the real interpo-
lation space

(X,Y )1/p∗,p =
{
u(0): u ∈W 1,p((0, τ );X)∩Lp

(
(0, τ );Y )},

where 1/p∗ + 1/p = 1. In particular, if A generates a holomorphic C0-semigroup T on X,
then (

X,D(A)
)

1/p∗,p =
{
x ∈X: AT (·)x ∈ Lp

(
(0, τ );X)}. (6.7)

Thus, the mild solution u = T (·)x of Px(0) is in W 1,p((0, τ );X)) if and only if
x ∈ (D(X),A)1/p∗,p.

6.2.3. Strong solutions of periodic problems. Let A be a closed operator on a Banach
space X. For f ∈ Lp((0,2π);X), we consider the periodic problem

Pper(f )

{
u′(t)=Au(t)+ f (t), t ∈ [0,2π],
u(0)= u(2π).

A strong Lp-solution of Pper(f ) is a function u ∈ W 1,p((0, τ );X) ∩ Lp((0, τ );D(A))

such that (Pper) is satisfied t-a.e. We may identify Lp((0,2π);X) and L
p

2π(R,X). Then it
is not difficult to see the following.

PROPOSITION. Let 1 <p <∞. The following assertions are equivalent:
(i) For each f ∈ Lp((0,2π);X), there exists a unique strong Lp-solution of Pper(f );

(ii) iZ⊂ ρ(A) and (kR(ik,A))k∈Z is an Lp-multiplier.
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Let us consider a Hilbert space H . Then we obtain the following theorem.

THEOREM. Let 1 < p <∞. Let A be a closed operator on a Hilbert space H . The fol-
lowing are equivalent:

(i) iZ⊂ ρ(A) and supk∈Z ‖kR(ik,A)‖<∞;
(ii) for all f ∈ Lp , there exists a unique strong Lp-solution of Pper(f ).

For the implication (i) ⇒ (ii) one considers Mk = kR(ik,A). The resolvent identity
implies that (k(Mk+1−Mk))k∈Z is bounded. Thus assertion (ii) follows from Section 6.1.1.
Similarly, one obtains from Section 6.1.5 the following characterization on UMD-spaces.

THEOREM [ArBu02]. Let A be a closed operator on a UMD-space X and let 1 <p <∞.
The following are equivalent:

(i) iZ⊂ ρ(A) and {kR(ik,A): k ∈ Z} is R-bounded;
(ii) for all f ∈ Lp((0,2π);X), there exists a unique strong Lp-solution of (Pper).

Two things are remarkable:
1. Condition (ii), i.e., well-posedness of the periodic problem in the sense of strong

Lp-solutions, is p-independent for 1 <p <∞.
2. Whereas no characterization of Lp-multipliers seems possible in general (if 1 <

p <∞, p �= 2), in the context of resolvents, it is.
Finally, we remark that A satisfies the equivalent conditions of the theorem if and only

if −A does so. In particular, A need not be the generator of a C0-semigroup.

6.2.4. Maximal regularity on Hilbert space. Let X be a Banach space. Assume that
A generates a holomorphic semigroup T . Then, for f ∈L1((0, τ );X), x ∈X,

u= T (·)x + T ∗ f

is the unique mild solution of Px(f ). We want to investigate when the solution is strong.
If f ≡ 0, this is done in Section 6.2.2. Thus we may consider x = 0, i.e., we want to
investigate P0(f ).

THEOREM. Let A be the generator of a holomorphic C0-semigroup T on a Hilbert
space H . Then

T ∗ f ∈W 1,p((0, τ );X) for all f ∈Lp
(
(0, τ );X), 1 <p <∞. (6.8)

PROOF. Let τ = 2π . Replacing A by A − ω we may assume that λ ∈ ρ(A) when-
ever Reλ � 0 and ‖λR(λ,A)‖ � M . Let f ∈ Lp((0, τ );H). Then by the first the-
orem of Section 6.2.3 there exists a unique strong Lp-solution v of Pper(f ). Then
v(0) ∈ (H,D(A))1/p∗,p by Section 6.2.2. Let u(t) = v − T (t)v(0). Then u is a strong
Lp-solution of P0(f ). �
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Property (6.8) is frequently called maximal regularity, or (MR) for short. Thus, on
Hilbert space, every generator of a holomorphic C0-semigroup does enjoy this prop-
erty (MR). It is also known that (MR) implies holomorphy of the semigroup (see Sec-
tion 6.2.6).

6.2.5. Characterization of Hilbert space. For a long time it has been an open problem
whether the preceding theorem holds more generally on UMD-spaces. However, the an-
swer is negative.

THEOREM (Kalton and Lancien [KL00]). Let X be a Banach space possessing an uncon-
ditional basis. Let 1 < p <∞. If X is not isomorphic to a Hilbert space, then there exist
a holomorphic C0-semigroup T and f ∈Lp((0, τ );X) such that T ∗f /∈W 1,p((0, τ );X).

The semigroup T is not constructed directly, the existence of such semigroup T is proved
implicitly using several deep results of geometry of Banach spaces. However one can say
that the generator A of T is a block-diagonal operator with respect to some conditional
basis in X.

It is an open problem whether the Theorem does also hold in Banach spaces with condi-
tional bases. Also, so far no explicit counterexample, and in particular, no model is known
for which (MR) fails.

6.2.6. Maximal regularity on UMD-spaces. On UMD-spaces, with the same proof as in
Section 6.2.4 based on the periodic operator-valued multiplier theorem of Section 6.1.5
one obtains the following characterization.

THEOREM (Weis). Assume that X is a UMD-space. Let A be a closed operator, τ > 0,
1 < p <∞. The following are equivalent:

(i) for all f ∈ Lp((0, τ );X), there exists a unique u ∈W 1,p((0, τ );X) ∩ Lp((0, τ );
D(A)) such that{

u′(t)= Au(t)+ f (t) a.e.,

u(0)= 0;
(ii) there exist ω ∈ R such that λ ∈ ρ(A) whenever Reλ > ω and the set {λR(λ,A):

Reλ > ω} is R-bounded.

It was Weis [Wei00a] who proved that (ii) implies (i), Clément and Prüss [CP01] showed
necessity of the condition. Weis gave a different proof (than we indicated here), based on
his operator-valued Michlin’s theorem on the real line.

DEFINITION. We say that an operator A satisfies condition (MR) (for maximal regularity)
if condition (i) is satisfied.

It can be seen from the Theorem that property (MR) is independent of p ∈ (1,∞) and
of τ > 0. Moreover, (MR) implies that A generates a holomorphic semigroup T . Thus, the
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solution u of (i) is given by u = T ∗ f . If A satisfies (MR) then the existence of strong
Lp-solutions on the entire half-line (0,∞) is merely a question of the asymptotic behavior
of T as the following result shows. See Section 1.3 for the definition of ω(T ).

THEOREM. Let A be the generator of a holomorphic C0-semigroup T on a Banach
space X. The following assertions are equivalent:

(i) A satisfies (MR) and ω(T ) < 0;
(ii) T ∗ f ∈W 1,p((0,∞),X)∩Lp((0,∞);D(A)) for all f ∈Lp((0,∞);X).

PROOF. (ii) ⇒ (i) follows from Datko’s theorem [[ABHN01], p. 336]. For (ii) ⇒ (i),
see [Dor00], Theorem 5.2. �

Finally, we mention that the restriction to p ∈ (1,∞) is essential. If A generates
a C0-semigroup T on a reflexive space X such that T ∗ f ∈ W 1,1((0,1);X) for all
f ∈ L1((0,1);X), then A is bounded (see [Gue95]).

6.2.7. Perturbation of (MR). In general it is not at all easy to prove R-boundedness.
However, it is not difficult to see that condition (ii) of the preceding theorem is stable
under small perturbation (see [KuWe01], [ArBu02]).

THEOREM. Let A be an operator satisfying (MR) on a UMD-space X. Then there exists
ε > 0 such that, for each linear B :D(A)→X,

‖Bx‖� ε‖Ax‖+ b‖x‖, x ∈D(A),

for some b � 0, also A+B satisfies (MR).

6.2.8. BIP and maximal regularity. An important criterion for maximal regularity is
property BIP. The following theorem is due to Dore and Venni [DoVe87].

THEOREM. Let A ∈ BIP on a UMD-space X such that ϕbip(A) < π/2. Then −A has
property (MR).

We sketch two different proofs.

FIRST PROOF. One can show directly that BIP implies that for ϕbip < ϕ < π/2 one has
σ(A)⊂Σϕ and that the set {λR(λ,A): λ ∈C\Σϕ} is R-bounded, [DHP01], Theorem 4.5.
Thus the first theorem of Section 6.2.6 can be applied. �

SECOND PROOF [DOVE87]. The space Y = Lp((0, τ );X) has the UMD-property and
the operator A on Lp((0, τ );X) given by (Au)(t) = Au(t) with domain D(A) =
Lp((0, τ );D(A)) obviously inherits BIP from A with angle ϕbip(A) � ϕbip(A). On the

other hand, the operator B on Lp((0, τ );X) given by D(B)=W
1,p
0 ((0, τ );X),Bu= u′,

has BIP with angle ϕbip(B)= π/2 (see [HP97] or [DoVe87]). Assuming that 0 ∈ ρ(A), it
follows from the Dore–Venni theorem (Section 4.4.8) that A+ B is closed. The Theorem
of Section 4.2 shows that A+B is invertible. This is exactly property (MR). �



58 W. Arendt

6.2.9. Maximal regularity for positive contraction semigroups on Lp(Ω). The character-
ization of maximal regularity by R-sectoriality 6.2.11 (and Section 4.7.5) has the following
interesting consequence [Wei00b].

THEOREM (Lamberton and Weis). Let 1 < p <∞. Let −A be the generator of a positive
contractive C0-semigroup T on Lp(Ω). If T is holomorphic, then A has (MR).

This result had been first proved by Lamberton [Lam87] in the case where T is also
contractive for the L∞- and L1-norm.

6.2.10. Maximal regularity and quasi-linear problems. The property of maximal regu-
larity is most important in order to solve quasi-linear problems. Here we give a result on
local existence.

Let X be a UMD-space and let D be a Banach space such that D ↪→d X. Let 1 <p <∞
and Y = (X,D)1/p∗,p, where 1/p+ 1/p∗ = 1. Let A :Y → L(D,X) be Lipschitz contin-
uous on each bounded subset of Y . Let u0 ∈ Y and assume that the operator−A(u0) on X

with domain D(A(u0))=D has property (MR). Then the following result holds.

THEOREM (Clément and Li [CL94]). For each f ∈L
p

loc((0,∞);X), there exist τ > 0 and
a solution u ∈W 1,p((0, τ );X)∩Lp((0, τ );D) of{

u′(t)+A
(
u(t)

)
u(t)= f (t), t ∈ (0, τ ),

u(0)= u0.
(P )

Observe that W 1,p((0, τ );X) ∩ Lp((0, τ );D) ⊂ C([0, τ ];Y ) so that the condition on
the initial value of u makes sense.

SKETCH OF THE PROOF OF THE THEOREM. We show how maximal regularity is used to
give a fixed point argument. Rewrite the problem as

u′(t)+A(u0)u(t)= f (t)+ (A(u0)−A(u)
)
u.

Let MR(τ ) := Lp((0, τ );D)∩W 1,p((0, τ );X). Then S1v = f + (A(u0)−A(v))v defines
a mapping S1 : MR(τ )→ Lp((0, τ );X). Consider S2 :Lp((0, τ );X)→MR(τ ) defined by
S2g = u, where u ∈MR(τ ) is the solution of u̇+A(u0)u= g, u(0)= u0. Then S = S2 ◦ S1
is a mapping from MR(τ ) into MR(τ ). One can show that S is a strict contraction if τ > 0
is small enough. Thus the Banach fixed point theorem shows that S has a fixed point which
is a solution of (P ). �

6.2.11. R-sectorial operators. As we mentioned before, on Hilbert space (and only
on Hilbert space), boundedness and R-boundedness are the same. On the other hand,
it turns out that many results known for Hilbert spaces can be carried over to Lp-spaces,
1 <p <∞, if boundedness is replaced by R-boundedness. The operator-valued
Marcinkiewicz of Section 6.1.5 and the Michlin multiplier theorem [Wei00a] are of this
kind. We mention some further results. We say that an operator A is R-sectorial if there
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exists 0 < ϕ < π such that σ(A) ⊂ Σϕ and such that the set {λR(λ,A): λ ∈ C \Σϕ} is
R-bounded. In that case let ϕR sec(A) be the infimum of all angles with these properties.

On a UMD-space an operator A has property (MR) if and only if A+ ω is R-sectorial
for some ω ∈R.

In analogy to Section 5.1 one has the following results. Assume that X = Lp(Ω),
1 <p <∞.

If A has a bounded H∞-calculus, then A is R-sectorial and ϕH∞(A) = ϕR sec(A).
Moreover, if B is a second R-sectorial operator commuting with A such that ϕH∞(A)+
ϕR sec(B) < π , then A+B is closed.

For this and many other interesting properties we refer to [Wei00a], [Wei00b]
and [KW01].

7. Gaussian estimates and ultracontractivity

Frequently it is easy to define a semigroup on L2(Ω) with the help of form methods for ex-
ample. In this section we discuss under which conditions such a semigroup can be extended
to Lp(Ω). An important item is to investigate whether semigroup properties (as holo-
morphy, maximal regularity, H∞-calculus) extrapolate to Lp . Integral representations by
Gaussian kernels play a big role.

7.1. The Beurling–Deny criteria

For simplicity we consider real spaces in this section. Let H be a real Hilbert space. Let
V ↪→d H be another Hilbert space and a :V ×V →R a continuous bilinear form which is
H -elliptic, i.e.,

a(u,u)+ω‖u‖2
H � α‖u‖2

V , u ∈ V,

for some ω ∈ R, α > 0. Recall that this is the same as saying that a is a closed form with
form domain D(a)= V . Denote by A the operator associated with a (see Section 5.3.1).
Then −A generates a C0-semigroup T on H which has a holomorphic extension to HC,
the complexification of H . In the following we assume that H = L2(Ω) for some measure
space (Ω,Σ,μ) so that HC = L2(Ω,C). We let V+ = V ∩L2(Ω)+.

7.1.1. Theorem (First Beurling–Deny criterion). The semigroup T is positive if and only
if u ∈ V implies u+ ∈ V and

a
(
u+, u−

)
� 0.
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Here, for u ∈ L2(Ω), we let u+(x) = max{u(x),0}, u− = (−u)+. The next condition
characterizes L∞-contractivity. An operator S on L2(Ω) is called submarkovian if S � 0
and ‖Sf ‖∞ � ‖f ‖∞ for all f ∈ L2(Ω) ∩ L∞(Ω). A semigroup T on L2(Ω) is called
submarkovian if each T (t) is submarkovian.

7.1.2. Theorem (Second Beurling–Deny criterion). Assume that the semigroup T is pos-
itive. Then T is submarkovian if and only if u∧ 1 ∈ V for each u ∈ V+ and

a
(
u∧ 1, (u− 1)+

)
� 0.

Here we denote by 1 the function identically equal to 1. Note that u∧ 1+ (u− 1)+ = u.
We refer to [Ouh92], [[Ouh04]] for a proof of these criteria. Note that T ∗ is associated with
a∗ :V × V →R given by a∗(u, v)= a(v,u). If T and T ∗ are submarkovian, then∥∥T (t)f

∥∥
Lp � ‖f ‖Lp (7.1)

for all f ∈ Lp(Ω) ∩ L2(Ω), t � 0 and p = 1,∞ at first; but by interpolation also for all
p ∈ (1,∞). The form a is called a Dirichlet form if the two criteria of Beurling–Deny are
satisfied. If in addition the form a is symmetric (i.e., a = a∗), then the semigroup T consists
of self-adjoint operators satisfying (7.1). Each C0-semigroup of symmetric submarkov-
ian operators is associated with a symmetric Dirichlet form. The monographs [[FOT94]],
[[MR86]], [[BH91]] are devoted to the theory of Dirichlet forms and their important and
interesting interplay with stochastic processes. Here we are merely interested in analyti-
cal properties.

7.1.3. Domination [Ouh96]. Let a and b be two closed forms on L2(Ω) with associ-
ated semigroups S and T , respectively. Assume that S and T are positive. The following
assertions are equivalent:

(i) S(t) � T (t), t � 0;
(ii) (a) D(a) ⊂ D(b) and for u ∈ D(b), if 0 � u � v ∈ D(a), then u ∈ D(a) (ideal

property), and
(b) a(u, v) � b(u, v) for all 0 � u, v ∈D(a) (monotonicity).

We mention two prototype examples.

7.1.4. Examples. Let Ω ⊂ Rn be an arbitrary open set. The Dirichlet Laplacian �D
Ω

and the Neumann Laplacian �N
Ω generate symmetric submarkovian semigroups satisfy-

ing 0 � et�
D
Ω � et�

N
Ω , t � 0.

7.2. Extrapolating semigroups

Now we consider complex spaces. Let (Ω,Σ,μ) be a measure space and T a C0-semi-
group on L2(Ω). We assume throughout this section that∥∥T (t)

∥∥L(Lp)
� M, 0 < t � 1, (7.2)
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for p = 1,∞ and hence for all p ∈ [1,∞] by interpolation. Here, given an operator
S ∈L(L2(Ω)) and 1 � p, q �∞, we let

‖S‖L(Lp,Lq) = sup
{‖Sf ‖Lq : f ∈ Lp ∩L2,‖f ‖Lp � 1

}
. (7.3)

Note that T and T ∗ are submarkovian if and only if M = 1. It follows from (7.2) that for
suitable constants M1, ω1,∥∥T (t)

∥∥L(Lp)
� M1eω1t , t � 0, (7.4)

for all p ∈ [1,∞]. From this we deduce that, for 1 � p <∞, there exist bounded operators
Tp(t) ∈L(Lp(Ω)) which are consistent, i.e.,

Tp(t)f = Tq(t)f, f ∈Lp ∩Lq, t > 0, (7.5)

and such that T2(t) = T (t), t > 0. It is clear that Tp(t + s) = Tp(t)Tp(s) for t , s � 0,
1 � p <∞. If 1 <p < 2, we deduce from the interpolation inequality∥∥Tp(t)f − f

∥∥
Lp �

∥∥T1(t)f − f
∥∥θ
L1

∥∥T2(t)f − f
∥∥1−θ

L2 ,

where 1
p
= θ

1 + 1−θ
2 , so that limt↓0 Tp(t)f = f in Lp for f ∈ L2 ∩ L1. Thus Tp is

a C0-semigroup for 1 < p � 2, and also for 2 < p < ∞ by a similar argument. It is
clear that T1 : (0,∞)→ L(L1(Ω)) is strongly measurable, and hence strongly continu-
ous [[Dav80], p. 18]. However, it seems to be unknown whether T1 is a C0-semigroup, in
general. It is if one of the following conditions is satisfied.

7.2.1. Conditions for T1 being a C0-semigroup. Assume that one of the following condi-
tions is satisfied:

(a) M = 1;
(b) Ω has finite measure;
(c) T (t) � 0, t > 0;
(d) there exist an open set Ω ′ ⊃Ω and a C0-semigroup S on L1(Ω ′) such that∣∣T (t)f

∣∣� S(t)|f | on Ω for all f ∈L1(Ω). (7.6)

Then T1 is a C0-semigroup.

See [Voi92] for the cases (a)–(c) and [AtE97] for (d).
We assume throughout that one of the four conditions (a)–(d) is satisfied. Then T1 is

a C0-semigroup. Observe that also T ∗ satisfies (7.2) and one of these conditions. This
allows us to define the extension of T to L∞(Ω). In fact, (T ∗)1 is a C0-semigroup. Now
define T∞(t) = (T ∗)1(t)

∗. Then T∞ is a weak*-continuous semigroup whose generator
we define by A∞ = (A∗1)∗. The consistency property (7.5) remains valid for p = 1 and
1 � q �∞. If Ω has finite measure, then of course, T∞(t)= T (t)|L∞(Ω).
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We call Tp the extrapolation semigroup of T on Lp , 1 � p �∞.
Now we want to investigate how properties of the semigroup T = T2 are inherited by the

extrapolation semigroups Tp . We denote by Ap the generator of Tp. Note that A∞ = (A∗1)∗.

7.2.2. The Heritage list

Property of T2 Inherited by
(a) bounded generator Tp for 1 <p <∞
(b) holomorphy Tp for 1 <p <∞, not by T1
(c) norm continuous on (t0,∞) Tp for 1 <p <∞, not by T1
(d) A2 has compact resolvent Ap for 1 < p <∞, not by A1
(e) spectrum σ(Ap) �= σ(Aq), p �= q in general,

but σ(A2)= σ(Ap) for 1 < p <∞
if A2 has compact resolvent

(f) positivity Tp for 1 � p �∞
(g) positivity and irreducibility Tp for 1 � p <∞
(h) (MR) for A2 unknown
(i) H∞-calculus for A2 unknown
(j) BIP unknown

7.2.3. Proofs and comments. We comment on the diverse properties. The first three
(a)–(c) concern regularity of the semigroup.

(a) Let 1 < p < 2, 1
p
= θ

1 + 1−θ
2 . Then by the Riesz–Thorin theorem ‖Tp(t) − I‖ �

‖T1(t)− I‖θ‖T2(t)− I‖1−θ → 0 as t ↓ 0. This implies that Ap is bounded.
(b) This is a consequence of Stein’s interpolation theorem (cf. [[Dav90], Theo-

rem 1.4.2]). But a similar proof as for (a) can be given for contraction semigroups
using the following result (see [[Paz83], p. 68]).

THEOREM (Kato–Neuberger–Pazy). Let 1 < p <∞ and let T be a C0-semigroup
on Lp(Ω) such that ‖T (t)‖ � 1, t � 0. Then T is holomorphic if and only if
limt↓0‖T (t)− I‖< 2.

Now the argument of (a) also gives a proof of (b).
(c) The argument of (a) also gives a proof of (c).
(d) This is [[Dav90], Theorem 1.6.1 and Corollary 1.6.2]. Properties (f ) and (g) are

trivial. Here a semigroup is called positive, if it leaves the real space invariant and
its restriction to the real space is positive.

(i) Example 4.5.3 provides a counterexample where the semigroups extrapolate to
Lp merely for 1 < p < ∞, the operator A2 has H∞-calculus, but Ap has not
H∞-calculus for p �= 2. We do not know such an example where the semigroups
extrapolate to Lp for 1 � p �∞.

Next we give some interesting examples showing, in particular, that the positive results
in (b), (c) or (d) cannot be extended to p = 1.
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7.2.4. The harmonic oscillator [[Dav90], Section 4.3]. Consider the operator given by

Apu= 1

2

(−u′′ + x2u− u
)

on Lp(R, e−x2
dx) with maximal domain. Then Ap generates a C0-semigroup Tp on

Lp(R, e−x2
dx), 1 � p < ∞. This family is consistent. Moreover, Tp is holomorphic

for 1 < p < ∞, but T1 is not norm continuous on [t0,∞) for any t0 > 0. Ap has
a compact resolvent for 1 < p < ∞. One has σ(Ap) = N0 for 1 < p < ∞ but
σ(A1)= {λ ∈C: Reλ � 0}. Thus A1 has not a compact resolvent.

7.2.5. Black–Scholes equation. For 1 � p <∞, let the operator Bp on Lp(0,∞) be
given by

(Bp)(x)= x2u′′(x)+ 2xu′(x),

D(Bp)=
{
u ∈ Lp(0,∞): xu′ ∈ Lp(0,∞), x2u′′ ∈ Lp(0,∞)

}
.

Then B2 is associated with the symmetric Dirichlet form a given by

a(u, v)=
∫ ∞

0
u′v′x2 dx,

D(a)= {u ∈ L2(0,∞): xu′ ∈ L2(0,∞)
}

and thus generates a symmetric Markovian semigroup T2. The extrapolation semigroup Tp

has Bp as generator. The spectrum of Bp is the parabola σ(Bp)= {(1/p − 1/2+ is)2 −
1/4: s ∈R}, 1 � p <∞. In particular,

σ(Bp)∩ σ(Bq)= ∅ if 1 � p < q � 2.

Note that Tp governs the Black–Scholes partial differential equation

ut = x2uxx + 2xux.

Reference: [Are94], Section 3, Example 3.

7.2.6. Symmetric submarkovian semigroups, optimal angles and the Neumann Laplacian
on horn domains. Let A2 be the generator of a symmetric submarkovian semigroup T2
on L2(Ω) and denote by Tp the C0-semigroup on Lp(Ω) with generator Ap extrapolat-
ing T2, 1 � p <∞. Then Liskevich and Perelmuter [LP95] showed that the angle ob-
tained by the Stein interpolation theorem can be improved. In fact, Tp has a holomorphic,
contractive extension to the sector Σθp , where 0 � θp < π

2 such that cosθp = |1− 2/p|.
In particular, the spectrum of Ap is contained in the sector

Sp :=
{
reiθ : r � 0,

π

2
+ θp � |θ |� 2π

}
, 1 � p �∞.
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It was Voigt [Voi96] who first showed that this sector is optimal. In fact, modifying Ex-
ample 7.2.5 he constructed a degenerate elliptic operator Ap on Lp(0,∞)2 such that the
spectrum of Ap is equal to Sp .

Another interesting example in this context is the symmetric Ornstein–Uhlenbeck op-
erator Ap on Lp(Rn,μ), where μ is the invariant measure. It generates a symmetric sub-
markovian semigroup Tp on Lp(Rn,μ). Metafune, Pallara and Priola [MPP02] computed
explicitly the spectrum and showed that it is independent of p ∈ [1,∞). In particular,
the spectrum of Ap is real for all p ∈ [1,∞). However, Chill, Fašangová, Metafune and
Pallara [CFMP03] showed that Σθp is the sector of holomorphy of Tp , i.e., the worst case
is realized for the symmetric Ornstein–Uhlenstein semigroup.

Kunstmann [Kun02] constructed an open unbounded domain Ω in Rn (which is com-
posed by infinitely many “horn domains”) such that the Neumann Laplacian has bad in-
terpolation properties. In particular, for a domain Ω composed by infinitely many horn
domains the spectrum of the Neumann Laplacian �N

Ω,p in Lp(Ω) depends on p. Moreover,

the semigroup (et�
N
Ω,1)t�0 is not holomorphic in L1(Ω). In fact, it is not even eventually

norm continuous since the spectrum of �N
Ω,1 is the left-half plane.

Concerning the functional calculus, one can say the following: given a symmetric sub-
markovian semigroup T2 with extension semigroups Tp on Lp(Ω), by Section 4.7.5 the
negative generator Ap of Tp has a bounded H∞-calculus and

ϕR sec(Ap)= ϕH∞(Ap), 1 <p <∞.

Cowling [Cow83] showed that ϕH∞(Ap) � ϕs(Ap), where ϕs(Ap)= π/2−π |1/2−1/p|
is the angle obtained by the Stein interpolation theorem. However Kunstmann and Strkalj
[KS03] showed that ϕH∞(Ap) < ϕs(Ap) for 1 < p <∞, p �= 2. Still, it seems to be open
whether always ϕH∞(Ap)= θp.

7.3. Ultracontractivity, kernels and Sobolev embedding

In this section we consider a semigroup T on L2(Ω) which is regularizing in the Lp-sense:
We will ask that T (t)L2(Ω)⊂ Lq(Ω) for some q > 2. This property implies in particular
that T (t) is an integral operator. Throughout this section (Ω,Σ,μ) is a measure space.

7.3.1. The Dunford–Pettis criterion. Let K ∈ L∞(Ω ×Ω). Then

(SKf )(x)=
∫
Ω

K(x, y)f (y)dy (7.7)

defines a bounded operator SK ∈L(L1(Ω),L∞(Ω)).

THEOREM (see, e.g., [AB94]). The mapping K �→ SK is an isometric isomorphism from
L∞(Ω ×Ω) onto L(L1(Ω),L∞(Ω)). Moreover, K(x,y) � 0 a.e. if and only if SK � 0.



Semigroups and evolution equations: Functional calculus, regularity and kernel estimates 65

7.3.2. Ultracontractive semigroups. Let T be a C0-semigroup on L2(Ω). We assume
that (7.2) is satisfied and denote by Tp the extrapolation semigroup of T on Lp(Ω). Thus
Tp is a C0-semigroup for 1 < p <∞, we suppose that this be true also for p = 1 (cf.
Section 7.2.1). Denote by Ap the generator of Tp. It follows from (7.2) that∥∥Tp(t)

∥∥� M1eωt , t � 0, (7.8)

for some M1 � 1, ω ∈R and all p ∈ [1,∞]. Thus (ω−Ap) is sectorial for all 1 � p <∞
by Section 4.1.3 and the fractional powers (ω−Ap)

α are defined for all α � 0. Note that

D
(
(ω−Ap)

α
)=D

(
(ω1 −Ap)

α
)= (ω1 −Ap)

−αLp(Ω)

for all ω1 >ω.

THEOREM. Let n > 0 be a real number. Consider the following conditions.
(i) There exist c > 0, 1 � p < q �∞ such that

∥∥T (t)
∥∥L(Lp,Lq)

� ct
− n

2 | 1
p− 1

q | for all 0 < t � 1.

(ii) There exists a constant c > 0 such that for all 1 � p < q �∞,

∥∥T (t)
∥∥L(Lp,Lq)

� ct
− n

2 | 1
p− 1

q |, 0 < t � 1.

(iii) There exist 1 <p <∞ and 0 < α < n
2p such that D((ω−Ap)

α)⊂ Lq , where q is

defined by α = n
2 (

1
p
− 1

q
).

(iv) For all 0 < α < n
2p and all 1 < p <∞ one has D((ω − Ap)

α) ⊂ Lq , where q is

defined by α = n
2 (

1
p
− 1

q
).

Then (i) ⇔ (ii) ⇒ (iv)⇒ (iii). If T is holomorphic then all four assertions are equivalent.
If the generator A of T is associated with a closed form with form domain V ↪→ L2(Ω)

such that V ∩ L1(Ω) is dense in L1(Ω) and if n > 2, then these four conditions are also
equivalent to

(v) V ↪→ L2n/(n−2)(Ω).

We call a semigroup ultracontractive if the equivalent conditions (i) and (ii) are satisfied.
The number dim(T ) = inf{n > 0: (i) is valid} is called the semigroup dimension. Note
that n is not entire, in general. It was Varopoulos who startet a systematic investigation
of the dimension of a semigroup, mainly in the framework of symmetric submarkovian
semigroups. We refer to [[VSC93]], [[Sal02]], [[Dav90]] for the historical references and
further results.

PROOF OF THE THEOREM. (i) ⇔ (ii): Assertion (ii) for p = 1, q =∞ becomes

(ii)′
∥∥T (t)

∥∥L(L1,L∞)
� const · t−n/2, 0 < t � 1.
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The Riesz–Thorin theorem allows one to go from (ii)′ to (ii). The following trick due to
Coulhon [Cou90] allows one to show that (i) implies (ii)′. It is done in two steps. We as-
sume (i).

(a) We show that ‖T (t)‖L(L1,Lq) � const · t− n
2 (1− 1

q ), 0 � t � 1. Let α = n
2 (

1
p
− 1

q
),

β = n
2 (1− 1

q
). Choose 0 < θ < 1 such that 1

p
= θ

1 + 1−θ
q

. Then 1
p
− 1

q
= θ(1− 1

q
),

i.e., α = θβ . By the hypothesis (i), ‖T (t)‖L(Lp,Lq) � const · t−α and we want to
show that∥∥T (t)

∥∥L(L1,Lq)
� const · t−β .

Let

f ∈L1 ∩L∞, ‖f ‖L1 � 1,

cf := sup
0<t�1

tβ
∥∥T (t)f

∥∥
Lq .

Then∥∥T (t)f
∥∥
Lq =

∥∥T (t/2)T (t/2)f
∥∥
Lq

� const · t−α
∥∥T (t/2)f

∥∥
Lp

� const · t−α
∥∥T (t/2)f

∥∥θ
L1

∥∥T (t/2)f
∥∥1−θ

Lq

� const · t−αt−β(1−θ)(cf )
1−θ

� const · t−β(cf )
1−θ .

Hence, cf = sup tβ‖T (t)f ‖Lq � const · (cf )1−θ . Thus cf � const1/θ , where
const does not depend of f . This proves the claim.

(b) It follows from (a) by duality that

∥∥T (t)
∥∥L(Lq′ ,L∞)

≤ const · t− n
2 (1− 1

q )

= const · t− n
2 (

1
q′ − 1

∞ )
.

Applying (a) to this gives (ii)′.
(i) ⇒ (iv). The proof of [[Dav90], Theorem 2.4.2] based on the Marcinkiewicz interpo-

lation theorem carries over to this case.
(iii) ⇒ (i). Assume that T is holomorphic. Replacing A by A− ω we can assume that

T is exponentially stable. Let q = np
n−2αp . Since ‖tαAα

pTp(t)f ‖� const · ‖f ‖p , 0 < t � 1,
and D(Aα

p) ↪→ Lq by hypothesis, we have∥∥Tp(t)f
∥∥
q
≤ const · ∥∥Tp(t)f

∥∥
D(Aα

p)
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= const · ∥∥Aα
pTp(t)f

∥∥
Lp

≤ const · t−α‖f ‖Lp .

Since α = n
2 (

1
p
− 1

q
), the claim follows.

Now assume that A is associated with a closed form.
(v) ⇒ (i). Since ‖T (t)‖L(L2,V ) � const · t−1/2, 0 < t � 1 (see [[Tan79]]), the argument

is as in the previous implication for p = 2.
(i) ⇒ (v). As we know from Section 5.5.1 it may happen that V �=D(A1/2). Thus we

cannot use the previous implication (i) ⇒ (iv). However, for forms, ultracontractivity can
be characterized by Nash’s inequality

‖f ‖2+4/n
2 � const · ‖f ‖2

V ‖f ‖4/n
1 , f ∈ V ∩L1(Ω),

by the proof of [[Dav90], Theorem 2.4.6]. Thus, assuming (i), Nash’s inequality holds.
Consider the symmetric form b(u, v) = 1

2 (a(u, v) + a(v,u)) with domain V . Denote
by B the operator associated with b and by S the semigroup generated by −B . It fol-
lows from the characterization via Nash’s inequality we just mentioned that S satisfies (i).
Hence, D(B1/2) ⊂ L2n/n−2 by the implication (i) ⇒ (iv). But V = D(B1/2) since B is
self-adjoint. �

Now we show some further properties of ultracontractive semigroups and give examples.

7.3.3. Kernels and compactness. Assume that T is an ultracontractive semigroup
on L2(Ω). Then∥∥T (t)

∥∥L(L1,L∞)
� M2t

−n/2eω2t for all t > 0 (7.9)

and for some M2 � 1, ω2 ∈ R. Thus, by the Dunford–Pettis criterion there exists a kernel
Kt ∈ L∞(Ω ×Ω) such that

(
Tp(t)f

)
(x)=

∫
Ω

Kt (x, y)f (y)dy, x-a.e. (7.10)

for all f ∈ Lp(Ω)∩L1(Ω). Moreover,∣∣Kt(x, y)
∣∣� M2eω2t · t−n/2, t > 0. (7.11)

Now assume that Ω has finite measure. Then T (t) is a Hilbert–Schmidt operator and hence
compact. This property extends to the entire Lp scale, 1 � p �∞, in virtue of ultracon-
tractivity. In fact, given t > 0, 1 � p �∞, we can factorize Tp(t) as follows:

Lp Tp(t/3)−→ L∞ ↪→ L2 T2(t/3)−→ L2 T2(t/3)−→ L∞ ↪→ Lp.

Thus Tp(t) is compact. We have shown the following.
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PROPOSITION. Let T be an ultracontractive semigroup on L2(Ω) with extrapolating
semigroups Tp, 1 � p �∞. If Ω has finite measure, then Tp(t) is a compact operator
on Lp(Ω) for all t > 0, 1 � p �∞.

7.3.4. The Gaussian semigroup and Sobolev embedding. As an illustrating example
we consider the Gaussian semigroup Gp on Lp(Rn) given by the kernel

KG
t (x, y)= (4πt)−n/2e−|x−y|2/4t . (7.12)

Thus (i) is satisfied for p = 1, q =∞, and in this case the semigroup dimension n is the
dimension of the space Rn. Denote the generator of Gp by �p . Then D(�p)=W 2,p(Rn),
1 < p <∞.

PROOF. The operator Gp(t) is a Fourier multiplier with symbol e−ξ2t . Thus R(1,�p) has
symbol (1+ ξ2)−1. Since for

f ∈ ϕ
(
Rn
)′
, F(Djf )= iξjFf,

we have to show that ξiξj (1+ ξ2)−1 is an Lp-Fourier multiplier (in order to deduce that
D(�p)=R(1,�p)L

p(Rn)⊂W 2,p(Rn)). This follows from Michlin’s theorem. �

Similarly, one sees with the help of Michlin’s theorem that

D
(
�m

p

)=W 2m,p
(
Rn
)
, 1 <p <∞,m ∈N.

Thus, the conclusion (iv) of the Theorem in Section 7.3.2 is the usual Sobolev embedding
theorem. We remark that such results are of particular interest if they are applied to the
Laplace–Beltrami operator on a Riemannian manifold (see [[VSC93]]).

7.3.5. The Dirichlet Laplacian. Let Ω ⊂ Rn be an arbitrary open set and consider the
Dirichlet Laplacian �D

Ω on L2(Ω). Then (et�
D
Ω ) is self-adjoint, submarkovian and ultra-

contractive since the form domain W
1,2
0 (Ω) is in Lq , where q = 2n

n−2 if n > 2 and ar-

bitrary q <∞ if n � 2. Denote by �D
Ω,p the generator of the extrapolation semigroup,

1 � p �∞. Then we deduce from the Theorem in Section 7.3.2 that

D
((−�D

Ω,p

)α)⊂ Lnp/(n−2αp) (7.13)

whenever 0 < α < n
2p . On the other hand, if Ω is irregular, then it can happen that

D(�D
Ω,p) �⊂W 1,p(Ω) for p > 2, see [[Gri92]]. Thus Sobolev embedding results cannot

be used here to prove (7.13).

7.3.6. The extension property. An open set Ω ⊂Rn has the extension property if the re-
striction mapping R :W 1,2(Rn)→W 1,2(Ω) is surjective. Then R0 : (kerR)⊥ →W 1,2(Ω)

is an isomorphism and E :=R−1
0 is a bounded operator from W 1,2(Ω) into W 1,2(Rn) such
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that (Eu)|Ω = u for all u ∈W 1,2(Ω). We call E an extension operator. If Ω is bounded
and has Lipschitz boundary, then Ω has the extension property. If Ω has the extension
property then

W 1,2(Ω)⊂ Lq(Ω) (7.14)

for q = 2n
n−2 if n > 2 and for all q <∞ if n � 2. This follows from the case Ω = Rn.

Property (7.14) implies ultracontractivity in many interesting examples. Here we consider
the Neumann Laplacian as prototype:

7.3.7. The Neumann Laplacian. Let Ω ⊂ RN be open. The Neumann Laplacian �N
Ω

generates a symmetric submarkovian semigroup on L2(Ω). If Ω has the extension prop-
erty then (et�

N
Ω )t�0 is ultracontractive. However, this is not true without this hypothesis.

For example, in dimension 1, we may consider Ω = (0,1) \ {1/n :n ∈ N}. Then 0 is an
eigenvalue of infinite multiplicity of �N

Ω , hence, the resolvent is not compact. In particu-
lar, the semigroup is not ultracontractive.

7.3.8. Asymptotic behavior of Tp(t) as t →∞. Let T be an ultracontractive, positive,
irreducible C0-semigroup on L2(Ω,μ), where Ω has finite measure. Then there exist
u,ϕ ∈ L∞(Ω) such that u(x) > 0, ϕ(x) > 0 a.e.,

∫
Ω u(x)ϕ(x)dμ= 1 and ω ∈ R, ε > 0,

M � 0 such that∥∥e−ωtTp(t)− P
∥∥L(Lp(Ω))

� Me−εt , t � 0,

for 1 � p �∞, where Pf = ∫
Ω

f (x)ϕ(x)dμ(x) · u, f ∈ L1(Ω).

PROOF. By Section 7.3.3 the operators Tp(t) are compact for 1 � p �∞, t > 0. It follows
that Ap has compact resolvent. Thus σ(Ap) is independent of p ∈ [1,∞] (see [[Dav90],
p. 36]). In particular, ω := s(Ap) is independent of p ∈ [1,∞]. Now the claim follows
from Section 3.5.1 for 1 � p <∞. For p =∞ one may use a duality argument. �

A particular example is T (t)= et�
n
Ω where Ω is a connected, bounded open set in Rn

with Lipschitz boundary. In this case Pf = 1
|Ω|
∫
Ω

f dx · 1Ω for all f ∈Lp(Ω).

7.4. Gaussian estimates

Let Ω ⊂ Rn be an open set and let T be a C0-semigroup on L2(Ω) (the L2-space of
complex-valued functions). We identify L2(Ω) with a subspace of L2(Rn) extending func-
tions on Ω by 0 on RN \Ω . Consider the Gaussian semigroup G on L2(Rn).

DEFINITION. The semigroup T admits a Gaussian estimate if there exist constants c > 0,
b > 0 such that∣∣T (t)f

∣∣� cG(bt)|f |, 0 < t � 1, (7.15)
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for all f ∈L2(Ω).

Note that (7.15) is an inequality between measurable functions in the almost everywhere
sense. It is not difficult to show that it implies an estimate of the form∣∣T (t)f

∣∣� MeωtG(bt)|f | (7.16)

for all t > 0, f ∈ L2(Ω). By the Dunford–Pettis criterion this is equivalent to saying that
T (t)= SKt , where Kt ∈ L∞(Ω ×Ω), is a kernel satisfying

∣∣Kt(x, y)
∣∣� const · eωt t−n/2e−|x−y|2/4bt , (x, y)-a.e. (7.17)

for all t > 0. If T admits a Gaussian estimate then by Section 7.2 (and in particular, Sec-
tion 7.2.1(d)) there exist consistent extrapolation semigroups Tp on Lp(Ω), 1 � p �∞,
such that T2 = T . For 1 � p <∞, Tp is a C0-semigroup, T∞ is w∗-continuous. By Ap we
denote the generator of Tp. These notations will be used in the following without further
notice. Our aim is to establish consequences of Gaussian estimates for Tp which allow us
in particular to replace some of the negative answers in the heritage list of Section 7.2.2 by
positive assertions. Later we will see that a large class of elliptic operators generate semi-
groups which satisfy Gaussian estimates. But before that we give two prototype examples.

7.4.1. Examples. (a) Let Ω ⊂Rn be an arbitrary open set. The semigroup generated by
the Dirichlet Laplacian �D

Ω on L2(Ω) satisfies

∣∣et�D
Ωf
∣∣� G(t)|f |, t > 0, (7.18)

for all f ∈ L2(Ω).
(b) Assume that Ω has the extension property. Then the semigroup (et�

N
Ω )t�0 gener-

ated by the Neumann �N
Ω Laplacian admits a Gaussian estimate.

PROOF. (a) Let 0 � f ∈ L2(Rn). It suffices to show that u := R(λ,�D
Ω)f � R(λ,

�)f =: v on Ω . By the definition via forms we have

λ

∫
Ω

uϕ +
∫
Ω

∇u∇ϕ =
∫
Ω

fϕ,ϕ ∈W
1,2
0 (Ω),

λ

∫
Rn

vϕ +
∫

Rn

∇v∇ϕ =
∫

Rn

f ϕ,ϕ ∈W 1,2(Rn
)
.

Hence, λ
∫
Ω
(u− v)ϕ + ∫

Rn ∇(u− v)∇ϕ = 0 for all ϕ ∈W
1,2
0 (Ω). Taking ϕ = (u− v)+

one obtains that (u− v)+ = 0.
(b) In this generality, this is due to Ouhabaz [Ouh03]. For a stronger version of the

extension property the result is proved in [[Dav90], p. 90]. �
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7.4.2. Remark (Proper domination). There is a significant difference between the two
examples: For the Dirichlet Laplacian we have proper domination; i.e., the constant c

in (7.15) is equal to 1. But this is the only realization of the Laplacian with this property:

Let Ω ⊂Rn be open. We assume that Ω is stable (see Section 5.4.5). Let S be a positive,
symmetric C0-semigroup on L2(Ω) such that S(t) � G2(t), 0 < t � 1. Assume that the
generator A of S satisfies D(Ω)⊂D(A) and Au=�u for all u ∈D(Ω). Then A=�D

Ω .

PROOF. (a) We consider L2(Ω) as a subspace of L2(Rn), extending functions by 0. Then
S(t) = (1ΩS(t/n))n � (1ΩG2(t/n))

n for all n ∈ N. Since limn→∞(1ΩG(t/n))n = et�
D
Ω

strongly by Section 5.4.5, we conclude that S(t) � et�
D
Ω , 0 < t <∞.

(b) Denote by a :V × V → R the symmetric closed form associated with −A. It fol-
lows from (a) and Section 7.1.3 that V ⊂ H 1

0 (Ω). For u, v ∈ D(Ω), we have a(u, v) =
−(Au|v)L2 = ∫ ∇u∇v dx . Note that ‖u‖2

L2 + a(u,u) defines an equivalent norm on V .

Thus ‖ · ‖V and ‖ · ‖H 1 are equivalent. Since D(Ω) is dense in H 1
0 (Ω), it follows that

H 1
0 (Ω)⊂ V . Thus V =H 1

0 (Ω) and a(u, v)= ∫Ω ∇u∇v dx for all u,v ∈H 1
0 (Ω). �

The fact that the constant c in (7.15) might be larger than 1 makes it difficult to prove
Gaussian estimates, and no such simple criteria as in Section 7.1.3 are available. We com-
ment on techniques to prove Gaussian estimates in Section 8.7. Now we establish heritage
properties made possible by Gaussian estimates.

7.4.3. Gaussian estimates and extrapolation of holomorphy. Let T be a C0-semigroup
on L2(Ω) which admits a Gaussian estimate. Assume that T is holomorphic of angle
θ ∈ (0,π/2]. Then also the extrapolation semigroups Tp are holomorphic of the same
angle θ for each p ∈ [1,∞].

This result due to Ouhabaz [Ouh95] (see [AtE97], Theorem 5.4, in the nonsymmetric
case) contrasts the examples in Sections 7.2.4 and 7.2.6, where, in absence of Gaussian
estimates, the angle depends on p and where T1 is not holomorphic.

7.4.4. Gaussian estimates and maximal regularity. Let T be a C0-semigroup on L2(Ω)

which has Gaussian estimates. If T is holomorphic, then Tp has property (MR) for
1 <p <∞.

This result is most important for applications to nonlinear equations. We refer to Sec-
tion 6.2.6 for the definition of (MR) and to [HP97], [CP01], [CD00], [Wei00b] and
[ArBu03a], Corollary 4.5, for proofs of this result.

Recall that holomorphy is a necessary condition for (MR). It may happen that a
semigroup T on L2(Ω) has Gaussian estimates without being holomorphic. In fact,
Voigt showed that the operator � + ix on L2(R) with suitable domain generates a
C0-semigroup S such that |S(t)f |� G(t)|f |, but S is not holomorphic, cf. [LM97], p. 303.
However, so far no example of a nonholomorphic positive semigroup with Gaussian esti-
mates is known.

7.4.5. Gaussian estimates and H∞-calculus. Let −A be the generator of a holomor-
phic C0-semigroup on L2(Ω) admitting a Gaussian estimate. Assume that (A + ω) has
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a bounded H∞-calculus for some ω ∈R. Then also (Ap+ω) has a bounded H∞-calculus
for some ω ∈R, for all 1 <p <∞.

This result is due to Duong and Robinson [DR96]. The restriction on Ω (doubling prop-
erty) made there was removed later by Duong and McIntosh [DM99]. We do not try to op-
timize the rescaling constant ω in our formulation, but rather refer to [DR96] and [AtE97],
pp. 118 and 122, for this.

We recall that on Hilbert space it suffices that the semigroup T be quasicontractive to
insure (A+ω) to have a bounded H∞-calculus for some ω.

7.4.6. Gaussian estimates and p-independence of the spectrum. Let T be a C0-semi-
group on Lp(Ω) admitting a Gaussian estimate. Denote by Tp the extrapolation
C0-semigroup on Lp(Ω) and by Ap its generator. Then σ(Ap)= σ(A2), 1 � p �∞.

In [Are94] it was proved that the connected component of ρ(Ap) is p-independent,
the general result was obtained by Kunstmann [Kun99]. An example of special interest
are Schrödinger operators for which the result had been obtained before by Hempel and
Voigt [HV86].

8. Elliptic operators

In this section we apply the results obtained before to semigroups generated by elliptic op-
erators of second order. If the coefficients and the domain in Rn are smooth, then classical
estimates of Agmon–Douglis–Nirenberg give precise information on the domain. Here we
consider merely measurable coefficients. Then the domain can no longer be determined.
Under some mild conditions, however, Gaussian estimates can still be proved and lead to
a variety of semigroup and spectral properties. At the end of this chapter we mention also
some results for higher order operators and systems.

Let Ω ⊂ Rn be an open set. Let aij , bi , ci , a0 ∈ L∞(Ω), i, j = 1, . . . , n, be complex-
valued coefficients. We assume the ellipticity condition

Re
n∑

i,j=1

aij (x)ξi ξ̄j � α|ξ |2 for all ξ ∈Cn, x-a.e.,

where α > 0. Then we consider the elliptic operator

L :W 1,2
loc (Ω)→D(Ω)′

given by

Lu=−
n∑

i,j=1

Di(aijDju)+
n∑

i=1

(
biDiu−Di(ciu)

)+ a0u.

With the help of forms we will define various realizations of L in L2(Ω) corresponding to
diverse boundary conditions.
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Let V be a closed subspace of W 1,2(Ω) containing W
1,2
0 (Ω). We define the form

aV :V × V →C by

aV (u, v)=
∫
Ω

[
n∑

i,j=1

aij (x)DiuDjv+
n∑

i=1

(
biDiuv̄ + ciuDiv

)+ a0uv̄

]
dx.

Then aV is continuous and L2(Ω)-elliptic. Denote by AV the operator on L2(Ω) asso-
ciated with aV . Then −AV generates a holomorphic C0-semigroup TV on L2(Ω), and
we will investigate various properties of TV . At first we describe the operator AV more
precisely. It follows from the definition of the associated operator that

AV u= Lu

for all u ∈D(AV ). We will consider in particular three different boundary conditions which
we describe in the following section.

8.1. Boundary conditions

(a) Let V =W
1,2
0 (Ω). Then we call AV the elliptic operator with Dirichlet boundary

conditions. In that case one has D(AV )= {u ∈W
1,2
0 (Ω): Lu ∈L2(Ω)}.

(b) Let V =W 1,2(Ω). Then we call AV the elliptic operator with Neumann boundary
conditions. If coefficients and domain are smooth, then for u ∈ C2(�Ω) one has u ∈D(AV )

if and only if

n∑
j=1

(
n∑

i=1

aijDiu+ ciu

)
νj = 0 on ∂Ω,

where ν = (ν1, . . . , νn) is the outer normal. This is a consequence of Green’s formula.
(c) Mixed boundary conditions are realized by taking

V = {u|Ω : u ∈D
(
Rn \ Γ )}−W 1,2(Ω)

, where Γ is a closed subset of ∂Ω.

8.2. Positivity and irreducibility

By Section 7.1.1 the semigroup TV generated by −AV is positive if and only if all coeffi-
cients are real valued and

u ∈ V implies (Reu)+ ∈ V. (8.1)

This is, in particular, the case for all three boundary conditions considered in Section 8.1.
Moreover, if Ω is connected, then the semigroup is irreducible.
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8.3. Submarkov property: Dirichlet boundary conditions

Let V =W
1,2
0 (Ω). Assume that all coefficients are real. Then TV is submarkovian if and

only if

n∑
j=1

Djcj � a0 in D(Ω)′. (8.2)

See [ABBO00], Théorème 2.1.

8.4. Quasicontractivity in Lp

Assume that all coefficients are real valued. Assume furthermore that (8.1) and

u ∈ V+ ⇒ 1∧ u ∈ V (8.3)

hold. Then for each p ∈ (1,∞) there exists ωp ∈R such that∥∥TV (t)
∥∥L(Lp)

� eωpt , t � 0. (8.4)

This assertion is false though for p = 1 or p = ∞. However, if bj , cj ∈ W 1,∞(Ω),
j = 1, . . . , n, then there exists ω ∈R such that∥∥TV (t)

∥∥L(Lp)
� eωt , t � 0, (8.5)

for all p ∈ [1,∞].
References: [Ouh92], [ABBO00], [Dan00], [[Ouh04]].

8.5. Gaussian estimates: real coefficients

Assume that all coefficients are real valued. Let V be one of the three spaces considered
in Section 8.1. In the case of Neumann or mixed boundary conditions assume that Ω has
the extension property (in the weak sense of Section 7.3.6). Then TV admits Gaussian
estimates; see [AtE97], [Dan00], [Ouh03]. In particular, we have the following conse-
quences: Denote by Tp the extrapolation semigroup of TV in Lp(Ω) and by −Ap its gen-
erator. Then

(a) Tp is a holomorphic C0-semigroup, 1 � p <∞.
(b) The operator Ap satisfies (MR), 1 < p <∞.
(c) The operator (Ap + ω) has a bounded H∞-calculus for ω large enough and

ϕH∞(Ap +ω) < π/2, where 1 <p <∞.
(d) The spectrum σ(Ap) is independent on p ∈ [1,∞].
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(e) Asymptotic behavior: Assume that Ω is connected and bounded. Then there exist u,
ϕ ∈L∞(Ω) such that

u(x) > 0, ϕ(x) > 0 a.e.,
∫
Ω

u(x)ϕ(x)dx = 1,

and such that∥∥e−ωtTp(t)− P
∥∥L(Lp(Ω))

� Me−εt , t � 0,

for all 1 � p < ∞ and some ε > 0, M � 0, where ω = s(Ap) and Pf =∫
Ω

f (x)ϕ(x)dx · u.
This follows from Sections 7.4.3 for (a), 7.4.4 for (b), 7.4.5 for (c), 7.4.6 for (d) and

7.3.8 for (e) observing that Gaussian estimates imply ultracontractivity. We remark that
assertion (c) can already be deduced from (8.4) by Section 4.7.5.

8.6. Complex second-order coefficients

If the coefficients aij are complex-valued, the situation is more complicated. For Ω =Rn,
there are always Gaussian estimates if the aij are uniformly continuous [Aus96] or if
n � 2; but otherwise there are counterexamples (see Auscher, Coulhon and Tchamitchian
[ACT96] and Davies [Dav97]). If Ω is a Lipschitz domain and V =W

1,2
0 (Ω) or W 1,2(Ω),

then the existence of Gaussian estimates depends on the Lipschitz constant even for con-
stant complex aij : For small Lipschitz constant Gaussian estimates are valid in that case
[AT01a], but a counterexample based on [MNP85] is given for large Lipschitz constant.
However, if the imaginary parts of the aij are symmetric then Gaussian estimates are valid:

THEOREM ([Ouh03], Theorem 5.5). Assume that the imaginary parts of the coeffi-
cients satisfy

Imaij ∈W 1,∞, Im(aij + aji)= 0.

Let V =W
1,2
0 (Ω) or W 1,2(Ω) assuming the extension property in the latter case. Then

TV admits Gaussian estimates.

8.7. Further comments on Gaussian estimates

Gaussian estimates were first proved by Aronson [Aro67] for real nonsymmetric ellip-
tic operators on Rn with measurable coefficients. He used Moser’s parabolic Harnack in-
equality [Mos64]. New impetus to the subject came from Davies [Dav87] who introduced
a perturbation method (“Davies’ trick”) which provides an efficient tool to prove Gaussian
estimates via ultracontractivity. One of Davies’ motivations was to find optimal constants in
the estimates, and the results are presented for symmetric operators in his book [[Dav90]].
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Here we do not explain how the Gaussian estimates are proved but refer to the correspond-
ing articles mentioned above and to [[Fri64]], [AER94], [AMT98], [DHZ94]. Some of
the semigroup properties put together here carry over to estimates valid for higher-order
equations, see, for example, [Are97], [Hie96], [HP97], [tER98].

8.8. The square root property

Assume that Ω ⊂Rn is open, bounded with Lipschitz boundary. Consider the operator AV

with

V =W
1,2
0 (Ω) or V =W 1,2(Ω),

i.e., Dirichlet or Neumann boundary conditions are imposed. Let ω ∈ R be large so that
AV +ω is sectorial. Then

D
(
(AV +ω)1/2)= V.

This is an extremely deep result. For Rn, it is the famous Kato’s conjecture which was
solved recently by Auscher, Hofmann, Lacey, McIntosh and Tchamitchian [AHLMT02].
The result for the boundary conditions mentioned here is proved in [AT01a]. We refer to
these articles as well as [[AT98]] for the sophisticated techniques from harmonic analysis
leading to this result and also for various connections of these results with other areas.
We mention that Kato’s square root problem has also been solved for higher order elliptic
operators in Rn [AHMT01]. Finally, we mention an elegant short proof of the square root
property by ter Elst and Robinson [tER96b] (after previous work by McIntosh [McI85]) in
the special case where the second-order coefficients are Hölder continuous.

8.9. The hyperbolic equation

We keep the notations and assumptions made in the beginning of this section, but we as-
sume in addition that

aij = aji, i, j = 1, . . . , n.

Then the following holds.

THEOREM. The operator −AV generates a cosine function on L2(Ω) with phase space
V ×L2(Ω).

The proof [[ABHN01], Theorem 7.1] given for V =W
1,2
0 (Ω) carries over to arbitrary

closed subspaces V of W 1,2(Ω) containing W
1,2
0 (Ω). The assertion of the Theorem im-

plies in particular the square root property D((AV + ω)1/2) = V (for ω large). However,
here AV is a certain perturbation of a self-adjoint operator [[ABHN01], Corollary 3.14.12]
for which the square root property is easy in comparison with the general result mentioned
in Section 8.8.



Semigroups and evolution equations: Functional calculus, regularity and kernel estimates 77

8.10. Nondivergence form

Let aij ∈ C(Rn) such that

Re
∑

aij (x)ξiξj � α|ξ |2

for all x ∈Rn, ξ ∈Rn and some α > 0. Consider the operator A on L2(Rn) given by

Af =
n∑

i,j=1

aijDiDju

with domain D(A) =H 2(Rn). If the coefficients aij are Hölder continuous, then A gen-
erates a holomorphic C0-semigroup on L2(Rn) admitting Gaussian estimates [[Fri64],
Theorem 9.4.2]. However, there are no Gaussian estimates in general, if the coefficients
are merely uniformly continuous and bounded, even if they are real [Bau84]. However,
by other methods (viz. the T 1 Theorem) Duong and Simonett [DS97] show that the
Lp-realization of the above operator is sectorial and has a bounded H∞-calculus. Fur-
ther generalizations to VMO-coefficients are given by Duong and Yan [DY01] by wavelet
methods and by Heck and Hieber [HH03] via weighted estimates.

8.11. Elliptic operators with Banach space-valued coefficients

Elliptic operators with coefficients in a Banach space and the associated parabolic equa-
tions were introduced and investigated by Amann [Ama01]. Further regularity results were
obtained by Denk, Hieber and Prüss [DHP01] where a comprehensive presentation of the
subject is given. A basic result is the following.

THEOREM ([DHP01], Section 5.5). Let X be a UMD-space, n, m ∈ N, 1 < p < ∞,
aα ∈L(X) for multiindices α of order |α| =m. Assume the ellipticity condition

σ
(
A(ξ)

) ∈Σθ

for all ξ ∈Rn such that |ξ | = 1, and some θ ∈ [0,π/2), where we set

A(ξ)=
∑
|α|=m

aαξ
α, ξ ∈Rn.

Consider the operator A on Lp(Rn,X) with domain D(A)=Wm,p(Rn,X) given by

Au=
∑
|α|=m

aαD
αu.

Then A has a bounded H∞(Σθ)-calculus. In particular, A is R-sectorial.
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This result can be extended to elliptic operators on Lp(Ω,X) with diverse boundary
conditions. It is remarkable that it is possible to characterize precisely those boundary con-
ditions for which maximal regularity (MR) is valid; viz. by the Lopatinskii–Shapiro con-
dition; see [DDHPV04].
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