Maximum principle for L^{p}-viscosity solutions of fully nonlinear elliptic/parabolic PDEs

Shigeaki Koike (Saitama University)

June 2006 at Cortona

1 Introduction

In this talk, we discuss recent results in [3] with A. Świȩch on the maximum principle for L^{p}-viscosity solutions of fully nonlinear uniformly elliptic/parabolic equations with possibly superlinear $D u$ terms, and with unbounded coefficients and inhomogenious terms. More precisely, we are concerned with the following PDEs:

$$
\begin{array}{cl}
\mathcal{P}^{ \pm}\left(D^{2} u\right) \pm \mu(x)|D u|^{m}=f(x) & \text { in } \Omega, \\
u_{t}+\mathcal{P}^{ \pm}\left(D^{2} u\right) \pm \mu(x, t)|D u|^{m}=f(x, t) & \text { in } \Omega \times(0, T), \tag{2}
\end{array}
$$

where $\mathcal{P}^{ \pm}(X)= \pm \max \{\mp \operatorname{trace}(A X) \mid \lambda I \leq A \leq \Lambda I\}\left(X \in S^{n}\right)$ for fixed $0<\lambda \leq \Lambda$, $\Omega \subset \mathbf{R}^{n}$ is a bounded domain, and $T>0$ given. Here, $m \geq 1$, and μ and f belong to L^{p} spaces.

We will denote by Q and $\partial_{p} Q$, respectively, $\Omega \times(0, T)$ and $\partial Q \backslash(\Omega \times\{T\})$.
In what follows, we only consider L^{p}-viscosity subsolutions of (1) and (2) for \mathcal{P}^{-}because the other counterpart is trivially extended. Thus, we may suppose that μ and f are nonnegative.

We now mean by the maximum principle that the L^{p}-viscosity subsolutions of (1) and (2), respectively, satisfy

$$
\begin{align*}
& \sup _{\Omega} u \leq \sup _{\partial \Omega} u+O\left(\|f\|_{L^{p}(\Omega)}\right), \tag{1}\\
& \sup _{Q} u \leq \sup _{\partial_{p} Q}+O\left(\|f\|_{L^{p}(\Omega)}\right) \tag{2}
\end{align*}
$$

where $r \in[0, \infty) \rightarrow O(r) \in[0, \infty)$ are continuous functions (like polynomials) with $O(0)=$ 0 . For instance, if $p=n, m=1, \mu \equiv 0$ and $f \in L^{n}(\Omega)$, we know $O(r)=C r$ for some constant $C>0$ as the famous Alexandrov-Bakelman-Pucci maximum principle though in this case, we may obtain more precise estimate with the upper contact set.

However, for the superlinear case, $m>1$, there exists a counter-example even when $\mu, f \in L^{\infty}(\Omega)$. See our previous paper [2] for such an example when $m=2$. We note that it is possible to get similar counter-examples also for $m>1$ in the elliptic case (1).

2 Main results

We will use universal constants $p_{1} \in[n / 2, n)$ and $p_{2} \in[(n+2) / 2, n+1)$, respectively, for (1) and (2). In fact, for $p \in\left(p_{1}, n\right]$ (resp., $\left.p \in\left(p_{2}, n+1\right]\right)$, we can find strong solutions of some extremal PDEs associated with (1) (resp., (2)).

Here we only present typical results.
Theorem 1. Assume that $m>1, p, q>n$, and that $\|f\|_{p}^{m-1}\|\mu\|_{q}$ is small. Then, the maximum principle holds for (1) with $O(r)=C_{1}\left(r+r^{m}\|\mu\|_{q}\right)$.

The next result shows a difference between elliptic and parabolic PDEs.
Theorem 2. Assume that $m \geq 1, p>n+2, f \in L^{p}(Q)$ and $\mu \in L^{\infty}(Q)$. Then, the maximum principle holds for (2) with $O(r)=C_{2}\left(r+\|\mu\|_{\infty} r^{m}\right)$.

Theorem 3. Assume that $m=1, q>n+2, p \in\left(p_{2}, n+2\right]$. Let $\mu \in L^{q}(Q)$ and $f \in L^{p}(Q)$. Then, the maximum principle holds for (2) with $O(r)=C_{3} r$.

Theorem 4. Assume that $m>1, p>n+2$ and $q>n+2$. Let $f \in L^{p}(Q)$ and $\mu \in L^{q}(Q)$. Assume also that $\|f\|_{p}^{m-1}\|\mu\|_{q}$ is small. Then, the maximum principle holds for (2) with $O(r)=C_{4}\left(r+\|\mu\|_{q} r^{m}\right)$.

References

[1] L. A. Caffarelli, M. G. Crandall, M. Kocan \& A. Świģch, Comm. Pure Appl. Math., 49 (1996), 365-397.
[2] S. Koıke \& A. Świȩch, Nonlinear Differential Equations Appl., 11 (4) (2004), 491509
[3] S. Koike \& A. Świȩch, in preparation.

