Maximum principle for L^p -viscosity solutions of fully nonlinear elliptic/parabolic PDEs

Shigeaki Koike (Saitama University)

June 2006 at Cortona

1 Introduction

In this talk, we discuss recent results in [3] with A. Święch on the maximum principle for L^p -viscosity solutions of fully nonlinear uniformly elliptic/parabolic equations with possibly superlinear Du terms, and with unbounded coefficients and inhomogenious terms. More precisely, we are concerned with the following PDEs:

$$\mathcal{P}^{\pm}(D^2 u) \pm \mu(x) |Du|^m = f(x) \quad \text{in } \Omega, \tag{1}$$

$$u_t + \mathcal{P}^{\pm}(D^2 u) \pm \mu(x, t) |Du|^m = f(x, t) \quad \text{in } \Omega \times (0, T),$$
 (2)

where $\mathcal{P}^{\pm}(X) = \pm \max\{ \mp \operatorname{trace}(AX) \mid \lambda I \leq A \leq \Lambda I \}$ $(X \in S^n)$ for fixed $0 < \lambda \leq \Lambda$, $\Omega \subset \mathbf{R}^n$ is a bounded domain, and T > 0 given. Here, $m \geq 1$, and μ and f belong to L^p spaces.

We will denote by Q and $\partial_p Q$, respectively, $\Omega \times (0,T)$ and $\partial Q \setminus (\Omega \times \{T\})$.

In what follows, we only consider L^p -viscosity subsolutions of (1) and (2) for \mathcal{P}^- because the other counterpart is trivially extended. Thus, we may suppose that μ and f are nonnegative.

We now mean by the maximum principle that the L^p -viscosity subsolutions of (1) and (2), respectively, satisfy

$$\sup_{\Omega} u \le \sup_{\partial \Omega} u + O(\|f\|_{L^p(\Omega)}), \qquad \text{for } (1)$$

$$\sup_{Q} u \le \sup_{\partial_{p}Q} + O(\|f\|_{L^{p}(\Omega)}), \qquad \text{for } (2)$$

where $r \in [0, \infty) \to O(r) \in [0, \infty)$ are continuous functions (like polynomials) with O(0) = 0. For instance, if p = n, m = 1, $\mu \equiv 0$ and $f \in L^n(\Omega)$, we know O(r) = Cr for some constant C > 0 as the famous Alexandrov-Bakelman-Pucci maximum principle though in this case, we may obtain more precise estimate with the upper contact set.

However, for the superlinear case, m > 1, there exists a counter-example even when $\mu, f \in L^{\infty}(\Omega)$. See our previous paper [2] for such an example when m = 2. We note that it is possible to get similar counter-examples also for m > 1 in the elliptic case (1).

2 Main results

We will use universal constants $p_1 \in [n/2, n)$ and $p_2 \in [(n+2)/2, n+1)$, respectively, for (1) and (2). In fact, for $p \in (p_1, n]$ (resp., $p \in (p_2, n+1]$), we can find strong solutions of some extremal PDEs associated with (1) (resp., (2)).

Here we only present typical results.

Theorem 1. Assume that m > 1, p, q > n, and that $||f||_p^{m-1} ||\mu||_q$ is small. Then, the maximum principle holds for (1) with $O(r) = C_1(r + r^m ||\mu||_q)$.

The next result shows a difference between elliptic and parabolic PDEs.

Theorem 2. Assume that $m \ge 1$, p > n + 2, $f \in L^p(Q)$ and $\mu \in L^{\infty}(Q)$. Then, the maximum principle holds for (2) with $O(r) = C_2(r + \|\mu\|_{\infty} r^m)$.

Theorem 3. Assume that m = 1, q > n + 2, $p \in (p_2, n + 2]$. Let $\mu \in L^q(Q)$ and $f \in L^p(Q)$. Then, the maximum principle holds for (2) with $O(r) = C_3 r$.

Theorem 4. Assume that m > 1, p > n + 2 and q > n + 2. Let $f \in L^p(Q)$ and $\mu \in L^q(Q)$. Assume also that $\|f\|_p^{m-1}\|\mu\|_q$ is small. Then, the maximum principle holds for (2) with $O(r) = C_4(r + \|\mu\|_q r^m)$.

References

- L. A. CAFFARELLI, M. G. CRANDALL, M. KOCAN & A. ŚWIĘCH, Comm. Pure Appl. Math., 49 (1996), 365-397.
- [2] S. KOIKE & A. ŚWIĘCH, Nonlinear Differential Equations Appl., 11 (4) (2004), 491-509
- [3] S. KOIKE & A. ŚWIĘCH, in preparation.