## Exercise n 0.

Show that $\left(1-\frac{1}{n}\right)^{n}$ is bounded

$$
0 \leq\left(1-\frac{1}{n}\right)^{n}<1
$$

## Exercise n. 1

Show that the sequence

$$
x_{n}=\left(1-\frac{1}{n}\right)^{n},
$$

is an increasing sequence. We have

$$
x_{2}>x_{1}
$$

For $n>1$ consider the ratio

$$
\begin{gathered}
\frac{x_{n+1}}{x_{n}}=\frac{\left(1-\frac{1}{n+1}\right)^{n+1}}{\left(1-\frac{1}{n}\right)^{n}}=\left(\frac{n}{n+1}\right)^{n+1}\left(\frac{n}{n-1}\right)^{n} \\
=\left(\frac{n}{n+1}\right)^{n+1}\left(\frac{n}{n-1}\right)^{n+1}\left(\frac{n-1}{n}\right)=\left(\frac{n}{(n+1)} \frac{n}{(n-1)}\right)^{n+1}\left(\frac{n-1}{n}\right) \\
=\left(\frac{n^{2}}{\left(n^{2}-1\right)}\right)^{n+1}\left(\frac{n-1}{n}\right)=\left(\frac{n^{2}-1+1}{\left(n^{2}-1\right)}\right)^{n+1}\left(\frac{n-1}{n}\right)=\left(\frac{n^{2}-1}{n^{2}-1}+\frac{1}{n^{2}-1}\right)^{n+1}\left(\frac{n}{n-1}\right)
\end{gathered}
$$

By Bernoulli inequality with

$$
0<h=\frac{1}{n^{2}-1}, \quad \forall n>1
$$

Hence, substituing in the previous inequality

$$
\frac{x_{n+1}}{x_{n}}=\left(1+\frac{1}{n-1}\right)\left(\frac{n}{n-1}\right)>1, \quad \forall n>1
$$

Also, the sequence $\left(x_{n}\right)$ defined by

$$
x_{n}=\left(1-\frac{1}{n}\right)^{n}, \quad n=1,2, \ldots
$$

is increasing by an application of inequality between geometrical and arithmetic mean. Indeed, applying the inequality

$$
\sqrt[n+1]{a_{1} \cdots a_{n+1}} \leq \frac{a_{1}+\cdots+a_{n+1}}{n+1}
$$

with

$$
a_{1}=\cdots=a_{n}=1-\frac{1}{n} \quad \text { and } \quad a_{n+1}=1
$$

we obtain

$$
\sqrt[n+1]{\left(1-\frac{1}{n}\right)^{n}} \leq \frac{n}{n+1}=1-\frac{1}{n+1} .
$$

This is equivalent to $x_{n} \leq x_{n+1}$. Hence $\left(x_{n}\right)$ is increasing.
Exercise n 2. Compute

$$
\lim _{n \rightarrow \infty}\left(1-\frac{1}{n^{2}}\right)^{n}
$$

By Bernoulli inequality

$$
1-\frac{1}{n}<\left(1-\frac{1}{n^{2}}\right)^{n}<1
$$

Hence, passing to the limit

$$
\lim _{n \rightarrow \infty}\left(1-\frac{1}{n^{2}}\right)^{n}=1
$$

## Exercise n 3

From the previous exercizes compute

$$
\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{n}
$$

We have

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{n}=\frac{1}{e} \\
\lim _{n \rightarrow \infty}\left(1-\frac{1}{n^{2}}\right)^{n}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{n} \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
\end{gathered}
$$

then

$$
\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{n}=\frac{\lim _{n \rightarrow \infty}\left(1-\frac{1}{n^{2}}\right)^{n}}{\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}}=\frac{1}{e}
$$

## References

[1] E. Giusti, Analisi Matematica I, Boringhieri Ed, 1988.
Dipartimento di Metodi e Modelli, Matematici per le Scienze Applicate, Università di Roma "La Sapienza", Via A. Scarpa, 16, 00161 Roma, Italy

E-mail address: loreti@dmmm.uniroma1.it

