Exercise n 0. "
Show that (1 — }1) is bounded

Exercise n.1
Show that the sequence
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By Bernoulli inequality with
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Hence, substituing in the previous inequality
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Also, the sequence (z;,) defined by
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is increasing by an application of inequality between geometrical and arithmetic

mean. Indeed, applying the inequality
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This is equivalent to z, < x,4+1. Hence (z,,) is increasing.

Exercise n 2. Compute
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we obtain




By Bernoulli inequality

Hence, passing to the limit
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Exercise n 3.

From the previous exercizes compute
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