
Exercise n 0.
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Exercise n.1
Show that the sequence
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,

is an increasing sequence. We have

x2 > x1

For n > 1 consider the ratio
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By Bernoulli inequality with

0 < h =
1

n2 − 1
, ∀n > 1

Hence, substituing in the previous inequality

xn+1
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=

(
1 +

1
n− 1

)(
n
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)
> 1, ∀n > 1

Also, the sequence (xn) defined by

xn =
(
1− 1

n

)n

, n = 1, 2, . . . .

is increasing by an application of inequality between geometrical and arithmetic
mean. Indeed, applying the inequality

n+1√a1 . . . an+1 ≤
a1 + · · ·+ an+1

n + 1
with

a1 = · · · = an = 1− 1
n

and an+1 = 1,

we obtain
n+1

√(
1− 1

n

)n

≤ n

n + 1
= 1− 1

n + 1
.

This is equivalent to xn ≤ xn+1. Hence (xn) is increasing.
Exercise n 2. Compute

lim
n→∞

(
1− 1

n2

)n

.
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By Bernoulli inequality

1− 1
n

<

(
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< 1

Hence, passing to the limit

lim
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= 1

Exercise n 3.
From the previous exercizes compute

lim
n→∞

(
1− 1

n

)n

.

We have

lim
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=
1
e
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then
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=
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e
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