1. Approximation of e

$$
e=\sum_{k=0}^{\infty} \frac{1}{k!}
$$

Consider

$$
\begin{gathered}
\sum_{k=0}^{n+m} \frac{1}{k!}-\sum_{k=0}^{n} \frac{1}{k!}=\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\ldots \frac{1}{(n+m)!}= \\
\frac{1}{(n+1)!}\left(1+\frac{1}{(n+2)}+\cdots \frac{1}{(n+2) \cdots(n+m)} \leq \frac{1}{(n+1)!}\left(1+\frac{1}{(n+2)}+\cdots \frac{1}{(n+2)^{m-1}}\right)<\frac{1}{n n!}\right.
\end{gathered}
$$

Then, as $m \rightarrow+\infty$, we find

$$
\begin{gathered}
0<e-\sum_{k=0}^{n} \frac{1}{k!}<\frac{1}{n n!} \\
e \approx 2,71828
\end{gathered}
$$

2. Irrationality of e

We have

$$
0<e-\sum_{k=0}^{n} \frac{1}{k!}<\frac{1}{n n!},
$$

assume, by contradiction, that e is a rational number, $e=\frac{p}{q}$ with p, q relative prime, hence

$$
0<\frac{p}{q}-\sum_{k=1}^{q} \frac{1}{k!}<\frac{1}{q q!}
$$

and

$$
0<q!\left(\frac{p}{q}-\sum_{k=0}^{q} \frac{1}{k!}\right)<\frac{1}{q}
$$

and we arrive to a contradiction, since the first is an integer and the second cannot be.

3. Trascendence of e

We recall from literature a proof of Hermite's theorem on the transcendence of the number e. The assert is the following

The number e is transcendental, that is it does not satisfy any algebraic equation of integer coefficients.

Proof. If f is a polynomial of degree n, then integrating by parts we obtain that

$$
\int_{0}^{a} f(x) e^{-x} d x+\left[e^{-x}\left(f(x)+f^{\prime}(x)+\cdots+f^{(n)}(x)\right)\right]_{0}^{a}=0
$$

Putting

$$
F(x)=f(x)+f^{\prime}(x)+\cdots+f^{(n)}(x)
$$

for brevity, it follows that

$$
e^{a} F(0)=F(a)+e^{a} \int_{0}^{a} f(x) e^{-x} d x
$$

for all real a.
Assume by contradiction that

$$
c_{0}+c_{1} e+\cdots+c_{m} e^{m}=0
$$

for some integers c_{0}, \ldots, c_{m} such that $c_{0} \neq 0$. Then we deduce from the above formula the following identity:

$$
0=c_{0} F(0)+c_{1} F(1)+\cdots+c_{m} F(m)+\sum_{i=0}^{m} c_{i} e^{i} \int_{0}^{i} f(x) e^{-x} d x
$$

We shall arrive at a contradiction by constructing a polynomial f such that

$$
\begin{equation*}
\left|c_{0} F(0)+c_{1} F(1)+\cdots+c_{m} F(m)\right| \geq 1 \tag{1}
\end{equation*}
$$

but

$$
\begin{equation*}
\left|\sum_{i=0}^{m} c_{i} e^{i} \int_{0}^{i} f(x) e^{-x} d x\right|<1 \tag{2}
\end{equation*}
$$

Fix a large prime number p, satisfying $p>m$ and $p>\left|c_{0}\right|$, and consider the polynomial

$$
f(x)=\frac{1}{(p-1)!} x^{p-1}(x-1)^{p}(x-2)^{p} \ldots(x-m)^{p} .
$$

Then

$$
\begin{equation*}
F(1), F(2), \ldots, F(m) \quad \text { are integer multiples of } \quad p . \tag{3}
\end{equation*}
$$

Indeed, $f, f^{\prime}, \ldots, f^{(p-1)}$ all vanish at $1,2, \ldots, m$. Furthermore, developing f and then differentiating term by term we obtain that $f^{(p)}, f^{(p+1)}, \ldots$ are polynomials whose coefficients are integer multiples of p. Hence (3) follows.

The above reasoning also shows that

$$
f(0)=f^{\prime}(0)=\cdots=f^{(p-2)}(0)=0
$$

and that

$$
f^{(p)}(0), f^{(p+1)}(0), \ldots
$$

are integer multiples of p. On the other hand,

$$
f^{(p-1)}(0)=(-1)^{m p}(m!)^{p}
$$

is an integer, but not a multiple of p because $p>m$. Since $0<\left|c_{0}\right|<p$, hence

$$
\begin{equation*}
F(0) \text { is integer, but not a multiples of } p \text {. } \tag{4}
\end{equation*}
$$

Now (1) follows from (3) and (4).
For the proof of (2) first we remark that

$$
|f(x)| \leq \frac{m^{m p+p-1}}{(p-1)!} \quad \text { if } \quad 0 \leq x \leq m
$$

Hence

$$
\left|\sum_{i=0}^{m} c_{i} e^{i} \int_{0}^{i} f(x) e^{-x} d x\right| \leq\left(\sum_{i=0}^{m} c_{i} e^{i}\right) \frac{m^{m p+p-1}}{(p-1)!}
$$

$$
=\left(\sum_{i=0}^{m} c_{i} e^{i} m^{m}\right) \frac{\left(m^{m+1}\right)^{p-1}}{(p-1)!}
$$

Since the last expression tends to zero as p tends to infinity, choosing a sufficiently large p hence (2) follows.

4. Stirling's Formula

James Stirling (Scotland, 1692-1770)
Approximation formula

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

that is

$$
\lim _{n \rightarrow \infty} \frac{n!}{\sqrt{2 \pi n}(n / e)^{n}}=1
$$

References

[1] G. M. Fichtenholz, A course of Differential and Integral Calculus, Nauka, Moscow, 1966.
[2] E. Giusti, Analisi Matematica I, Boringhieri Ed, 1988.

