THE NUMBER e

PAOLA LORETI

Consider the set of real numbers

$$
A=\left\{x_{n}=\sum_{k=0}^{n} \frac{1}{k!}: n \in \mathbb{N}\right\} .
$$

The set A is bounded. Indeed, we have clearly

$$
\sum_{k=0}^{n} \frac{1}{k!} \geq 2
$$

for all n. On the other hand, since

$$
k!\geq 2^{k-1}
$$

for all $k \in N$ by induction, we have

$$
\sum_{k=0}^{n} \frac{1}{k!} \leq 1+\sum_{k=1}^{n} \frac{1}{2^{k-1}}<=1+2=3
$$

for all n. Hence

$$
2<\sup _{n} A \leq 3 .
$$

By definition, we set

$$
e=\sup _{n} A .
$$

Now we consider

$$
A^{\prime}=\left\{x_{n}=\left(1+\frac{1}{n}\right)^{n}: n \in \mathbb{N}\right\}
$$

By Bernoulli inequality

$$
2<\sup _{n} A^{\prime}
$$

and, applying the inequality

$$
\sqrt[n+2]{a_{1} \cdots a_{n+2}} \leq \frac{a_{1}+\cdots+a_{n+2}}{n+2}
$$

with

$$
a_{1}=\cdots=a_{n}=1+\frac{1}{n} \quad \text { and } \quad a_{n+1}=a_{n+2}=\frac{1}{2}
$$

since

$$
\sqrt[n+2]{\left(1+\frac{1}{n}\right)^{n} \cdot \frac{1}{2} \cdot \frac{1}{2}} \leq \frac{n+2}{n+2}=1 .
$$

We obtain $x_{n} \leq 4$. Hence $\left(x_{n}\right)$ is bounded from above by 4 . Then, we set

$$
e^{\prime}=\sup _{n} A^{\prime}
$$

Date: June 26, 2007.

In order to give another useful definition of e, consider the binomial expansion,

$$
\left(1+\frac{1}{n}\right)^{n}=\sum_{k=0}^{n} \frac{n(n-1)(n-2) \ldots(n-k+1)}{n^{k}} \frac{1}{k!} .
$$

But

$$
\begin{aligned}
\frac{n(n-1)(n-2) \ldots(n-k+1)}{n^{k}} & =\frac{n}{n} \cdot \frac{n-1}{n} \cdots \frac{n-k+1}{n} \\
& =1\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \ldots\left(1-\frac{k-1}{n}\right)
\end{aligned}
$$

$$
\leq 1
$$

Hence

$$
\left(1+\frac{1}{n}\right)^{n} \leq \sum_{k=0}^{n} \frac{1}{k!}
$$

for all n. Taking the supremum over n of

$$
A^{\prime}=\left\{x_{n}=\left(1+\frac{1}{n}\right)^{n}: n \in \mathbb{N}\right\}
$$

we conclude that

$$
\sup _{n} A^{\prime} \leq \sup _{n} A
$$

We have just shown that

$$
e^{\prime} \leq e
$$

We are going to show that in fact $e^{\prime}=e$. We take $m<n$. Then

$$
\begin{aligned}
\left(1+\frac{1}{n}\right)^{n} & =\sum_{k=0}^{n} \frac{n(n-1)(n-2) \ldots(n-k+1)}{n^{k}} \frac{1}{k!} \\
& \geq \sum_{k=0}^{m} \frac{n(n-1)(n-2) \ldots(n-k+1)}{n^{k}} \frac{1}{k!} .
\end{aligned}
$$

By the definition of e^{\prime}, it follws that

$$
\begin{aligned}
e^{\prime} & \geq \sum_{k=0}^{m} \frac{n(n-1)(n-2) \ldots(n-k+1)}{n^{k}} \frac{1}{k!} \\
& =\sum_{k=0}^{m}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \ldots\left(1-\frac{k-1}{n}\right) \cdot \frac{1}{k!} .
\end{aligned}
$$

Taking the suprumum over n we conclude that

$$
e^{\prime} \geq \sum_{k=0}^{m} \frac{1}{k!}
$$

for all m. Now taking the supremum over m, the reverse inequality

$$
e^{\prime} \geq e
$$

and thus the equality

$$
e^{\prime}=e
$$

follows.

Let us investigate more closely the sequence

$$
x_{n}=\left(1+\frac{1}{n}\right)^{n} .
$$

We are going to show that this sequence is increasing, so that the Neper number is the limit of this sequence, as n tends to ∞, as a consequence of the fondamental theorem of monotone sequences.

We prove the monotonicity of the sequence x_{n} is two different ways.
First we consider the ratio

$$
\frac{x_{2}}{x_{1}}>1
$$

and

$$
\begin{aligned}
\frac{x_{n+1}}{x_{n}} & =\frac{\left(1+\frac{1}{n+1}\right)^{n+1}}{\left(1+\frac{1}{n}\right)^{n}} \\
& =\left(\frac{n+2}{n+1}\right)^{n+1}\left(\frac{n}{n+1}\right)^{n} \\
& =\left(\frac{n+2}{n+1}\right)^{n+1}\left(\frac{n}{n+1}\right)^{n+1}\left(\frac{n+1}{n}\right) \\
& =\left(\frac{n+2}{(n+1)} \frac{n}{(n+1)}\right)^{n+1}\left(\frac{n+1}{n}\right) \\
& =\left(\frac{n^{2}+2 n}{\left(n^{2}+2 n+1\right)}\right)^{n+1}\left(\frac{n+1}{n}\right) \\
& =\left(\frac{n^{2}+2 n+1-1}{\left(n^{2}+2 n+1\right)}\right)^{n+1}\left(\frac{n+1}{n}\right) \\
& =\left(\frac{n^{2}+2 n+1}{n^{2}+2 n+1}-\frac{1}{n^{2}+2 n+1}\right)^{n+1}\left(\frac{n+1}{n}\right) .
\end{aligned}
$$

We recall the Bernoulli inequality

$$
(1+h)^{n}>1+n h
$$

$h \geq-1, \quad h \neq 0, \forall n \in \mathbb{N}$, such that $\quad n \geq 2$.
We have

$$
h=-\frac{1}{n^{2}+2 n+1}>-1, \quad \forall n
$$

since

$$
\frac{1}{n^{2}+2 n+1}<1, \quad \forall n
$$

Hence,

$$
\frac{x_{n+1}}{x_{n}}=\frac{\left(1+\frac{1}{n+1}\right)^{n+1}}{\left(1+\frac{1}{n}\right)^{n}}>\left(1-\frac{1}{n+1}\right)\left(\frac{n+1}{n}\right)=1
$$

This ends the first proof. Next, we give another proof based on geometrical and arithmetic media of positive real numbers.

The sequence $\left(x_{n}\right)$ defined by

$$
x_{n}=\left(1+\frac{1}{n}\right)^{n}, \quad n=1,2, \ldots
$$

is bounded and increasing. Indeed, applying the inequality

$$
\sqrt[n+1]{a_{1} \cdots a_{n+1}} \leq \frac{a_{1}+\cdots+a_{n+1}}{n+1}
$$

with

$$
a_{1}=\cdots=a_{n}=1+\frac{1}{n} \quad \text { and } \quad a_{n+1}=1
$$

we obtain

$$
\sqrt[n+1]{\left(1+\frac{1}{n}\right)^{n}} \leq \frac{n+2}{n+1}=1+\frac{1}{n+1}
$$

This is equivalent to $x_{n} \leq x_{n+1}$. Hence $\left(x_{n}\right)$ is increasing.

References

[1] E. Giusti, Analisi Matematica I, Boringhieri Ed, 1988.
Dipartimento di Metodi e Modelli, Matematici per le Scienze Applicate, Università di Roma "La Sapienza", Via A. Scarpa, 16, 00161 Roma, Italy

E-mail address: loreti@dmmm.uniroma1.it

