ANALISI MATEMATICA I — A.A. 02/03 PROVE SCRITTE E RISOLUZIONI

L. GIACOMELLI, P. LORETI

1

Contents

I prova intermedia — 15.11.02 — compito A	3
Risoluzioni	3
I prova intermedia — 15.11.02 — compito B	5
Risoluzioni	6
I prova intermedia — 15.11.02 — compito C	7
Risoluzioni	8
I prova intermedia — 15.11.02 — compito D	10
Risoluzioni	10
II prova intermedia — 20.12.02 — compito A	12
Risoluzioni	13
II prova intermedia — 20.12.02 — compito B	14
Risoluzioni	15
Prova scritta del 08.01.03 — compito A	16
Risoluzioni	17
Prova scritta del 08.01.03 — compito B	19
Risoluzioni	19
Prova scritta del 20.01.03 — compito A	21
Risoluzioni	22
Prova scritta del 20.01.03 — compito B	23
Risoluzioni	24
Prova scritta del 03.02.03	26
Risoluzioni	26
Prova scritta del 01.04.03	28
Risoluzioni	28
Prova scritta del 03.06.03	30
Risoluzioni	31
Prova scritta del 17.07.03	32
Risoluzioni	33

Per evitare confusioni, specifichiamo che in queste pagine la simbologia " $f(x) \sim g(x)$ per $x \to x_0$ " significa che $\exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$. Ometteremo talvolta di specificare il punto di accumulazione x_0 , quando questo risulti chiaro dal contesto.

	2
110.00 2011000 401 11.00000	34 34

I prova intermedia — 15.11.02 — compito A

1) Sia data la successione

$$a_n = \frac{3n-1}{n+4}, \quad n \in \mathbb{N}, \ n \ge 0.$$

(a) Determinare (se esiste)

$$\lim_{n\to\infty}a_n$$

- (b) dire se $\{a_n\}$ è monotona;
- (c) determinare estremo superiore/inferiore e (se esistono) massimo/minimo dell'insieme

$$E = \{x \in R : x = a_n, n \in \mathbb{N}, n \ge 0\} \cup \{-1\}.$$

2) Studiare il carattere della serie

$$\sum_{n=1}^{+\infty} \left(1 + \frac{1}{n}\right)^{n+1} \frac{1}{n^{2\alpha}}$$

al variare del parametro α nei reali positivi.

3) Determinare, se esistono, i seguenti limiti:

(a)

$$\lim_{x \to +\infty} \sqrt{x^2 + 2} - \sqrt{x^2 - 2}$$

(b)

$$\lim_{x \to 3} \frac{\sin(x-3)}{x^2 - 9} \cos(\pi x)$$

(c)

$$\lim_{n\to\infty} n^{\alpha} \sin(n\pi + \frac{\pi}{2}) \quad \text{al variare di } \alpha \in R.$$

4) Verificare mediante il principio di induzione che

$$\sum_{k=1}^{n} \frac{3k}{k+2} \le 3n-2 \quad \forall n \ge 1.$$

RISOLUZIONI

Esercizio 1. Si ha

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{3 - \frac{1}{n}}{1 + \frac{4}{n}} = 3.$$

La successione è monotona crescente: infatti

$$a_{n+1} \ge a_n \iff \frac{3n+2}{n+5} \ge \frac{3n-1}{n+4} \iff 3n^2 + 14n + 8 \ge 3n^2 + 14n - 5 \iff 13 \ge 0.$$

Si ha di conseguenza

$$\sup\{x \in \mathbf{R} : x = a_n, n \ge 0\} = 3, \quad \inf\{x \in \mathbf{R} : x = a_n, n \ge 0\} = a_0 = -\frac{1}{4},$$

e quindi

$$\sup E = 3$$
, $\inf E = -1$.

Infine, poiché $-1 \in E$, $3 \notin E$,

$$\exists \max E, \quad \min E = -1.$$

Esercizio 2. Si osserva preliminarmente che

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1} = e.$$

Pertanto

$$\left(1+\frac{1}{n}\right)^{n+1}\frac{1}{n^{2\alpha}}\sim\frac{e}{n^{2\alpha}}\quad\text{per }n\to\infty.$$

Dal criterio del confronto asintotico segue immediatamente che la serie è convergente per $\alpha > \frac{1}{2}$ ($\iff 2\alpha > 1$) e divergente per $0 < \alpha \le \frac{1}{2}$.

Esercizio 3. (a). Moltiplicando e dividendo l'espressione per $\sqrt{x^2+2}+\sqrt{x^2-2}$, si ottiene

$$\lim_{x \to +\infty} \sqrt{x^2 + 2} - \sqrt{x^2 - 2} = \lim_{x \to +\infty} \frac{4}{\sqrt{x^2 + 2} + \sqrt{x^2 - 2}} = 0.$$

(b) Effettuando il cambiamento di variabile y = x - 3 e ricordando il limite notevole

$$\lim_{y \to 0} \frac{\sin(y)}{y} = 1,$$

si ottiene

$$\lim_{x \to 3} \frac{\sin(x-3)}{x^2 - 9} \cos(\pi x) = \lim_{y \to 0} \frac{\sin(y)}{(y+6)y} \cos(\pi y + 3\pi) = -\frac{1}{6}.$$

(c) Si osserva anzitutto che

$$\sin(n\pi + \frac{\pi}{2}) = (-1)^n \quad \forall n.$$

Si ha

$$\lim_{n \to \infty} n^{\alpha} (-1)^n = 0 \quad \text{per } \alpha < 0$$

e

$$\not\exists \lim_{n \to \infty} n^{\alpha} (-1)^n \quad \text{per } \alpha \ge 0.$$

Infatti, per $\alpha < 0$ la successione è il prodotto di una successione infinitesima e di una limitata:

$$\lim_{n \to \infty} n^{\alpha} = 0, \quad |(-1)^n| = 1.$$

Per $\alpha \geq 0$ è sufficiente esibire due sottosuccessioni che abbiano limiti diversi: ad esempio

$$\lim_{k \to \infty} (2k)^{\alpha} (-1)^{2k} = \begin{cases} 1 & \alpha = 0 \\ +\infty & \alpha > 0, \end{cases}$$

mentre

$$\lim_{k \to \infty} (2k+1)^{\alpha} (-1)^{2k+1} = \begin{cases} -1 & \alpha = 0\\ -\infty & \alpha > 0. \end{cases}$$

Esercizio 4. La proposizione da dimostrare per $n \ge 1$ è:

$$\mathcal{P}_n: \left[\sum_{k=1}^n \frac{3k}{k+2} \le 3n-2\right]$$

(i) \mathcal{P}_1 è vera. Infatti

$$\sum_{k=1}^{1} \frac{3k}{k+2} = \frac{3}{3} = 1 \le 1 = 3 \cdot 1 - 2.$$

(ii) $\mathcal{P}_n \Rightarrow \mathcal{P}_{n+1}$. Infatti

$$\sum_{k=1}^{n+1} \frac{3k}{k+2} = \sum_{k=1}^{n} \frac{3k}{k+2} + \frac{3(n+1)}{(n+1)+2} \stackrel{\mathcal{P}_n \text{ vera}}{\leq} 3n - 2 + \frac{3n+3}{n+3}$$

Poiché

$$3n-2+\frac{3n+3}{n+3} \le 3(n+1)-2 \iff \frac{3n+3}{n+3} \le 3 \iff 0 \le 6,$$

si ottiene

$$\sum_{k=1}^{n+1} \frac{3k}{k+2} \le 3(n+1) - 2,$$

e la verifica è conclusa.

I prova intermedia — 15.11.02 — compito B

1) Sia data la successione

$$a_n=-\frac{n+1}{2n+1},\quad n\in N,\ n\geq 0.$$

(a) Determinare (se esiste)

$$\lim_{n \to \infty} a_n$$

- (b) dire se $\{a_n\}$ è monotona;
- (c) determinare estremo superiore/inferiore e (se esistono) massimo/minimo dell'insieme

$$E = \{x \in R : \ x = a_n, \ n \in \mathbb{N}, n \ge 0\} \cup \{-2\}.$$

2) Studiare il carattere della serie

$$\sum_{n=1}^{+\infty} n \log \left(\frac{n+1}{n} \right) \frac{1}{n^{4\alpha}}$$

al variare del parametro α nei reali positivi.

3) Determinare, se esistono, i seguenti limiti:

(a)

$$\lim_{x \to +\infty} \sqrt{x^2 - 1} - \sqrt{x^2 - 2x}$$

(b)

$$\lim_{x \to -1} \frac{(x+2)^{\frac{1}{3}} - 1}{x^2 + 1} \cos(\pi x)$$

(c) $\lim_{n\to\infty} n^{\alpha-1} (-1)^n \quad \text{al variare di } \alpha \in R.$

4) Verificare mediante il principio di induzione che

$$\sum_{k=1}^{n} \frac{2k}{k+1} \ge n \quad \forall n \ge 1.$$

RISOLUZIONI

Esercizio 1. Si ha

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} -\frac{1 + \frac{1}{n}}{2 + \frac{1}{n}} = -\frac{1}{2}.$$

La successione è monotona crescente: infatti

$$a_{n+1} \ge a_n \iff \frac{n+2}{2n+3} \le \frac{n+1}{2n+1} \iff 2n^2 + 5n + 2 \le 2n^2 + 5n + 3 \iff 0 \le 1.$$

Si ha di conseguenza

$$\sup\{x \in \mathbf{R}: \ x = a_n, n \ge 0\} = -\frac{1}{2}, \quad \inf\{x \in \mathbf{R}: \ x = a_n, n \ge 0\} = a_0 = -1,$$

e quindi

$$\sup E = -\frac{1}{2}, \quad \inf E = -2.$$

Infine, poiché $-2 \in E$, $-\frac{1}{2} \notin E$,

$$\exists \max E, \quad \min E = -2.$$

Esercizio 2. Si osserva preliminarmente che

$$\lim_{n \to \infty} n \log \left(1 + \frac{1}{n} \right) = 1.$$

Pertanto

$$n\log\left(1+\frac{1}{n}\right)\frac{1}{n^{4\alpha}}\sim\frac{1}{n^{4\alpha}}\quad \text{per }n\to\infty.$$

Dal criterio del confronto asintotico segue immediatamente che la serie è convergente per $\alpha > \frac{1}{4}$ ($\iff 4\alpha > 1$) e divergente per $0 < \alpha \leq \frac{1}{4}$.

Esercizio 3. (a) Moltiplicando e dividendo l'espressione per $\sqrt{x^2-1} + \sqrt{x^2-2x}$, si ottiene

$$\lim_{x \to +\infty} \sqrt{x^2 - 1} - \sqrt{x^2 - 2x} = \lim_{x \to +\infty} \frac{2x - 1}{\sqrt{x^2 - 1} + \sqrt{x^2 - 2x}} = 1.$$

(b) La forma non è indeterminata. Si ottiene immediatamente

$$\lim_{x \to -1} \frac{(x+2)^{\frac{1}{3}} - 1}{x^2 + 1} \cos(\pi x) = 0.$$

(c) Si ha

$$\lim_{n \to \infty} n^{\alpha - 1} (-1)^n = 0 \quad \text{per } \alpha < 1$$

 \mathbf{e}

$$\exists \lim_{n \to \infty} n^{\alpha - 1} (-1)^n \text{ per } \alpha \ge 1.$$

Infatti, per $\alpha < 1$ la successione è il prodotto di una successione infinitesima e di una limitata:

$$\lim_{n \to \infty} n^{\alpha - 1} = 0, \quad |(-1)^n| = 1.$$

Per $\alpha \geq 1$ è sufficiente esibire due sottosuccessioni che abbiano limiti diversi: ad esempio

$$\lim_{k \to \infty} (2k)^{\alpha - 1} (-1)^{2k} = \begin{cases} 1 & \alpha = 1 \\ +\infty & \alpha > 1, \end{cases}$$

mentre

$$\lim_{k \to \infty} (2k+1)^{\alpha-1} (-1)^{2k+1} = \begin{cases} -1 & \alpha = 1\\ -\infty & \alpha > 1. \end{cases}$$

Esercizio 4. La proposizione da dimostrare per $n \ge 1$ è:

$$\mathcal{P}_n: \left[\sum_{k=1}^n \frac{2k}{k+1} \ge n\right]$$

(i) \mathcal{P}_1 è vera. Infatti

$$\sum_{k=1}^{1} \frac{2k}{k+1} = \frac{2}{2} = 1 \ge 1.$$

(ii) $\mathcal{P}_n \Rightarrow \mathcal{P}_{n+1}$. Infatti

$$\sum_{k=1}^{n+1} \frac{2k}{k+1} = \sum_{k=1}^{n} \frac{2k}{k+1} + \frac{2(n+1)}{(n+1)+1} \stackrel{\mathcal{P}_n}{\geq} n + \frac{2n+2}{n+2}$$

Poiché

$$n + \frac{2n+2}{n+2} \ge (n+1) \iff \frac{2n+2}{n+2} \ge 1 \iff n \ge 0,$$

si ottiene

$$\sum_{k=1}^{n+1} \frac{2k}{k+1} \ge n+1,$$

e la verifica è conclusa.

I prova intermedia — 15.11.02 — compito C

1) Sia data la successione

$$a_n = \frac{3+n}{2n-1}, \quad n \in \mathbb{N}, \ n \ge 1.$$

(a) Determinare (se esiste)

$$\lim_{n\to\infty}a_n\;;$$

- (b) dire se $\{a_n\}$ è monotona;
- (c) determinare estremo superiore/inferiore e (se esistono) massimo/minimo dell'insieme

$$E = \{x \in R : x = a_n, n \in \mathbb{N}, n \ge 1\} \cup \{5\}.$$

2) Studiare il carattere della serie

$$\sum_{n=1}^{+\infty} \left(1 + \frac{2}{n}\right)^n \frac{1}{n^{3\alpha}}$$

al variare del parametro α nei reali positivi.

3) Determinare, se esistono, i seguenti limiti:

$$\lim_{x \to +\infty} \sqrt{x^3 - x} - \sqrt{x^3 + 4x^2}$$

(b)

$$\lim_{x\to\pi}\frac{\pi^2-x^2}{e^{\pi-x}-1}\sin(-\frac{x}{2})$$

(c)

$$\lim_{n \to \infty} n^{3-\alpha} (-1)^n \quad \text{al variare di } \alpha \in R.$$

4) Verificare mediante il principio di induzione che

$$\sum_{k=1}^{n} \frac{3k}{k+2} \ge n \quad \forall n \ge 1.$$

RISOLUZIONI

Esercizio 1. Si ha

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} -\frac{1 + \frac{3}{n}}{2 - \frac{1}{n}} = \frac{1}{2}.$$

La successione è monotona decrescente: infatti

$$a_{n+1} \le a_n \iff \frac{4+n}{2n+1} \le \frac{3+n}{2n-1} \iff 2n^2+7n-4 \le 2n^2+7n+3 \iff 0 \le 7.$$

Si ha di conseguenza

$$\inf\{x \in \mathbf{R}: x = a_n, n \ge 0\} = \frac{1}{2}, \quad \sup\{x \in \mathbf{R}: x = a_n, n \ge 0\} = a_1 = 4,$$

e quindi

$$\inf E = \frac{1}{2}, \quad \sup E = 5.$$

Infine, poiché $5 \in E$, $\frac{1}{2} \notin E$,

$$\exists \min E, \quad \max E = 5.$$

Esercizio 2. Si osserva preliminarmente che

$$\lim_{n \to \infty} \left(1 + \frac{2}{n} \right)^n = e^2.$$

Pertanto

$$\left(1+\frac{2}{n}\right)^n\frac{1}{n^{3\alpha}}\sim\frac{e^2}{n^{3\alpha}}\quad\text{per }n\to\infty.$$

Dal criterio del confronto asintotico segue immediatamente che la serie è convergente per $\alpha > \frac{1}{3}$ ($\iff 3\alpha > 1$) e divergente per $0 < \alpha \le \frac{1}{3}$.

Esercizio 3. (a) Moltiplicando e dividendo l'espressione per $\sqrt{x^3 - x} + \sqrt{x^3 + 4x^2}$, si ottiene

$$\lim_{x \to +\infty} \sqrt{x^3 - x} - \sqrt{x^3 + 4x^2} = \lim_{x \to +\infty} \frac{-4x^2 - x}{\sqrt{x^3 - x} + \sqrt{x^3 + 4x^2}} = -\infty.$$

(b) Effettuando il cambiamento di variabile $y = \pi - x$ e ricordando il limite notevole

$$\lim_{y \to 0} \frac{e^y - 1}{y} = 1,$$

si ottiene

$$\lim_{x \to \pi} \frac{\pi^2 - x^2}{e^{\pi - x} - 1} \sin(-\frac{x}{2}) = \lim_{y \to 0} \frac{y(2\pi - y)}{e^y - 1} \sin(-\frac{\pi}{2} + \frac{y}{2}) = -2\pi.$$

(c) Si ha

$$\lim_{n \to \infty} n^{3-\alpha} (-1)^n = 0 \quad \text{per } \alpha > 3$$

 \mathbf{e}

Infatti, per $\alpha>3$ la successione è il prodotto di una successione infinitesima e di una limitata:

$$\lim_{n \to \infty} n^{3-\alpha} = 0, \quad |(-1)^n| = 1.$$

Per $\alpha \leq 3$ è sufficiente esibire due sotto successioni che abbiano limiti diversi: ad esempio

$$\lim_{k \to \infty} (2k)^{3-\alpha} (-1)^{2k} = \begin{cases} 1 & \alpha = 3 \\ +\infty & \alpha < 3, \end{cases}$$

mentre

$$\lim_{k \to \infty} (2k+1)^{3-\alpha} (-1)^{2k+1} = \begin{cases} -1 & \alpha = 3 \\ -\infty & \alpha < 3. \end{cases}$$

Esercizio 4. La proposizione da dimostrare per $n \ge 1$ è:

$$\mathcal{P}_n: \left[\sum_{k=1}^n \frac{3k}{k+2} \ge n \right]$$

(i) \mathcal{P}_1 è vera. Infatti

$$\sum_{k=1}^{1} \frac{3k}{k+2} = \frac{3}{3} = 1 \ge 1.$$

(ii) $\mathcal{P}_n \Rightarrow \mathcal{P}_{n+1}$. Infatti

$$\sum_{k=1}^{n+1} \frac{3k}{k+2} = \sum_{k=1}^{n} \frac{3k}{k+2} + \frac{3(n+1)}{(n+1)+2} \stackrel{\mathcal{P}_n \text{ vera}}{\geq} n + \frac{3n+3}{n+3}$$

Poiché

$$n + \frac{3n+3}{n+3} \ge (n+1) \iff \frac{3n+3}{n+3} \ge 1 \iff 2n \ge 0,$$

si ottiene

$$\sum_{k=1}^{n+1} \frac{3k}{k+2} \ge n+1,$$

10

e la verifica è conclusa.

I prova intermedia — 15.11.02 — compito D

1) Sia data la successione

$$a_n = \frac{3n-1}{1-4n}, \quad n \in \mathbb{N}, \ n \ge 1.$$

(a) Determinare (se esiste)

$$\lim_{n\to\infty} a_n$$

- (b) dire se $\{a_n\}$ è monotona;
- (c) determinare estremo superiore/inferiore e (se esistono) massimo/minimo dell'insieme

$$E = \{x \in R : x = a_n, n \in \mathbb{N}, n \ge 1\} \cup \{0\}.$$

2) Studiare il carattere della serie

$$\sum_{n=1}^{+\infty} n \log \left(\frac{n+2}{n} \right) \frac{1}{n^{\alpha}}$$

al variare del parametro α nei reali positivi.

3) Determinare, se esistono, i seguenti limiti:

(a)

$$\lim_{x \to +\infty} \sqrt{x^3 + x^2} - \sqrt{x^3 + 5x}$$

(b)

$$\lim_{x \to 2} \frac{x^2 - 4}{\tan(x - 2)} \cos(\frac{\pi}{2}x)$$

(c)

$$\lim_{n \to \infty} n^{3-2\alpha} \cos(n\pi) \quad \text{al variare di } \alpha \in R.$$

4) Verificare mediante il principio di induzione che

$$\sum_{k=1}^{n} \frac{2k}{k+1} \le 2n-1 \quad \forall n \ge 1.$$

RISOLUZIONI

Esercizio 1. Si ha

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{3 - \frac{1}{n}}{-4 + \frac{1}{n}} = -\frac{3}{4}.$$

La successione è monotona decrescente: infatti

$$a_{n+1} \le a_n \iff \frac{3n+2}{4n+3} \ge \frac{3n-1}{4n-1} \iff 12n^2 + 5n - 2 \ge 12n^2 + 5n - 3 \iff 1 \ge 0.$$

Si ha di conseguenza

$$\inf\{x\in\mathbf{R}:\;x=a_n,n\geq 0\}=-\frac{3}{4},\quad \sup\{x\in\mathbf{R}:\;x=a_n,n\geq 0\}=a_1=-\frac{2}{3},$$

e quindi

$$\inf E = -\frac{3}{4}, \quad \sup E = 0.$$

Infine, poiché $0 \in E, -\frac{3}{4} \not\in E,$

$$\exists \min E, \quad \max E = 0.$$

Esercizio 2. Si osserva preliminarmente che

$$\lim_{n \to \infty} n \log \left(1 + \frac{2}{n} \right) = 2.$$

Pertanto

$$n\log\left(1+\frac{2}{n}\right)\frac{1}{n^{\alpha}}\sim\frac{2}{n^{\alpha}}\quad \mathrm{per}\ n\to\infty.$$

Dal criterio del confronto asintotico segue immediatamente che la serie è convergente per $\alpha > 1$ e divergente per $0 < \alpha \le 1$.

Esercizio 3. (a). Moltiplicando e dividendo l'espressione per $\sqrt{x^3 + x^2} + \sqrt{x^3 + 5x}$, si ottiene

$$\lim_{x \to +\infty} \sqrt{x^3 + x^2} - \sqrt{x^3 + 5x} = \lim_{x \to +\infty} \frac{x^2 - 5x}{\sqrt{x^3 + x^2} + \sqrt{x^3 + 5x}} = +\infty.$$

(b). Effettuando il cambiamento di variabile y = x - 2 e ricordando il limite notevole

$$\lim_{y \to 0} \frac{\tan(y)}{y} = 1,$$

si ottiene

$$\lim_{x \to \pi} \frac{x^2 - 4}{\tan(x - 2)} \cos(\frac{\pi}{2}x) = \lim_{y \to 0} \frac{y(y + 4)}{\tan(y)} \cos(\pi + \frac{\pi y}{2}) = -4.$$

(c). Si osserva preliminarmente che

$$\cos(\pi n) = (-1)^n \quad \forall n.$$

Si ha

$$\lim_{n \to \infty} n^{3-2\alpha} (-1)^n = 0 \quad \text{per } \alpha > \frac{3}{2}$$

e

$$\exists \lim_{n \to \infty} n^{3-2\alpha} (-1)^n \text{ per } \alpha \le \frac{3}{2}.$$

Infatti, per $\alpha>\frac{3}{2}$ la successione è il prodotto di una successione infinitesima e di una limitata:

$$\lim_{n \to \infty} n^{3-2\alpha} = 0, \quad |(-1)^n| = 1.$$

Per $\alpha \leq \frac{3}{2}$ è sufficiente esibire due sottosuccessioni che abbiano limiti diversi: ad esempio

$$\lim_{k \to \infty} (2k)^{3-2\alpha} (-1)^{2k} = \begin{cases} 1 & \alpha = \frac{3}{2} \\ +\infty & \alpha < \frac{3}{2}, \end{cases}$$

mentre

$$\lim_{k \to \infty} (2k+1)^{3-2\alpha} (-1)^{2k+1} = \begin{cases} -1 & \alpha = \frac{3}{2} \\ -\infty & \alpha < \frac{3}{2}. \end{cases}$$

Esercizio 4. La proposizione da dimostrare per $n \ge 1$ è:

$$\mathcal{P}_n: \left[\sum_{k=1}^n \frac{2k}{k+1} \le 2n - 1 \right]$$

(i) \mathcal{P}_1 è vera. Infatti

$$\sum_{k=1}^{1} \frac{2k}{k+1} = \frac{2}{2} = 1 \le 1 = 2 \cdot 1 - 1.$$

(ii) $\mathcal{P}_n \Rightarrow \mathcal{P}_{n+1}$. Infatti

$$\sum_{k=1}^{n+1} \frac{2k}{k+1} = \sum_{k=1}^{n} \frac{2k}{k+1} + \frac{2(n+1)}{(n+1)+1} \stackrel{\mathcal{P}_n \text{ vera}}{\leq} 2n - 1 + \frac{2n+2}{n+2}$$

Poiché

$$2n-1+\frac{2n+2}{n+2} \le 2(n+1)-1 \iff \frac{2n+2}{n+2} \le 2 \iff 0 \le 2,$$

si ottiene

$$\sum_{k=1}^{n+1} \frac{2k}{k+1} \le 2(n+1) - 1,$$

e la verifica è conclusa.

II prova intermedia — 20.12.02 — compito A

1) Sia data la funzione

$$f(x) = \begin{cases} (x-1)^2 & x \ge 1\\ a^2x^2 - a & x < 1. \end{cases}$$

Determinare, se esistono, i valori di a tali che:

- (a) f è continua in x = 1;
- (b) f è derivabile in x = 1;
- (c) $\lim_{x \to -\infty} \frac{f(x)}{x^2} = 2$. 2) Studiare la funzione

$$f(x) = |x|e^{2x}$$

e tracciare un grafico qualitativo.

3) Determinare, se esistono, i seguenti limiti:

$$\lim_{x \to 0^+} x^x \frac{\sin x}{x}$$

(a)
$$\lim_{x \to 0^{+}} x^{x} \frac{\sin x}{x}.$$
(b)
$$\lim_{x \to 0} \frac{e^{4x} - 1 - \log(1 + 4x)}{x^{2}}$$

4) Determinare:

(a)
$$\int_0^{\pi} x \cos(3x) dx$$
(b)
$$\int \frac{x^3}{2x^2 - 4} dx.$$

RISOLUZIONI

Esercizio 1. (a). Si ha:

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x - 1)^2 = 0,$$

$$\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (a^2 x^2 - a) = a(a - 1).$$

Pertanto la funzione è continua in x = 1 per a = 0, a = 1.

(b). Poiché ogni funzione derivabile in un punto è a fortiori continua in quel punto, ci si può limitare ai casi a=0, a=1. Si ha:

$$\lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{+}} (x - 1) = 0,$$

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{a^{2}x^{2} - a}{x - 1} = \begin{cases} 0 & a = 0 \\ 2 & a = 1. \end{cases}$$

Pertanto la funzione è derivabile in x=1 per a=0. In alternativa si possono eguagliare i limiti delle derivate dx e sx, purché sia chiaro che si considerano solo i casi in cui f è continua.

(c). Si ha

$$\lim_{x \to -\infty} \frac{f(x)}{r^2} = \lim_{x \to -\infty} \frac{a^2 x^2 - a}{r^2} = a^2 = 2 \iff a = \pm \sqrt{2}.$$

Esercizio 2.

 $Dom f = \mathbf{R}, f(x) > 0$ per ogni $x \neq 0, f(0) = 0$. Si ha:

$$\lim_{x\to -\infty} f(x) = 0 \text{ (mediante de l'Hôpital o gerarchie)},$$

$$\lim_{x\to \infty} f(x) = +\infty.$$

La retta y=0 è asintoto orizzontale per $x\to -\infty$. Non ci sono asintoti obliqui in quanto

$$\lim_{x \to \infty} \frac{f(x)}{x} = +\infty.$$

Si ha:

$$f'(x) = \begin{cases} e^{2x}(1+2x) & x > 0\\ -e^{2x}(1+2x) & x < 0. \end{cases}$$

In x = 0 la funzione presenta un punto angoloso:

$$f'_{+}(0) = 1, \quad f'_{-}(0) = -1$$

(mediante limite del rapporto incrementale o, poiché f è continua in x=0, mediante limiti dx e sx delle derivate prime). Pertanto la funzione è strettamente crescente in $(-\infty, -\frac{1}{2})$ e

in $(0, \infty)$, e strettamente decrescente in $(-\frac{1}{2}, 0)$. Ha quindi un massimo locale in $x = -\frac{1}{2}$, con $f(-\frac{1}{2}) = \frac{1}{2e}$, e un minimo locale e assoluto in x = 0, con f(0) = 0. Si ha:

$$f''(x) = \begin{cases} 4e^{2x}(1+x) & x > 0\\ -4e^{2x}(1+x) & x < 0. \end{cases}$$

Pertanto la funzione è convessa in $(-\infty, -1)$ e in $(0, \infty)$, concava in (-1, 0), con flesso in x = -1, $f(-1) = e^{-2}$.

Esercizio 3. (a). Si ha:

$$\lim_{x \to 0^+} \frac{\sin x}{x} = 1,$$

$$\lim_{x \to 0^+} x^x = \lim_{x \to 0^+} e^{x \log x} = 1$$

(per il secondo limite si può utilizzare il teorema di De L'Hôpital, o semplicemente ricordare le gerarchie di infiniti/infinitesimi).

(b). Sviluppando al secondo ordine in x=0:

$$\lim_{x \to 0} \frac{e^{4x} - 1 - \log(1 + 4x)}{x^2} = \lim_{x \to 0} \frac{1 + 4x + 8x^2 + o(x^2) - 1 - (4x - 8x^2 + o(x^2))}{x^2}$$
$$= \lim_{x \to 0} \frac{16x^2 + o(x^2)}{x^2} = 16.$$

Esercizio 4. (a). Integrando per parti:

$$\int x \sin(3x) \, dx = -\frac{1}{3} x \cos(3x) + \frac{1}{3} \int \cos(3x) \, dx = -\frac{1}{3} x \cos(3x) + \frac{1}{9} \sin(3x) + C.$$

Quindi

$$\int_0^\pi x \sin(3x) \, dx = \frac{\pi}{3}.$$

(b). Mediante divisione:

$$\frac{x^3}{x^2 - 2} = x + \frac{2x}{x^2 - 2}.$$

Decomponendo in fratti semplici

$$\frac{x^3}{x^2-2} = x + \frac{1}{x-\sqrt{2}} + \frac{1}{x+\sqrt{2}},$$

pertanto

$$\int \frac{x^3}{3x^2 - 6} \, dx = \frac{1}{3} \int x \, dx + \frac{1}{3} \int \frac{1}{x - \sqrt{2}} + \frac{1}{3} \int \frac{1}{x + \sqrt{2}} = \frac{1}{6} x^2 + \frac{1}{3} \log|x^2 - 2| + C.$$

Allo stesso risultato si perviene anche senza effettuare la decomposizione, osservando che $2x = (x^2 - 2)'$.

II prova intermedia — 20.12.02 — compito B

1) Sia data la funzione

$$f(x) = \begin{cases} 2(x-1) & x \ge 1\\ a^2x^2 - a & x < 1. \end{cases}$$

Determinare, se esistono, i valori di a tali che:

- (a) f è continua in x = 1;
- (b) f è derivabile in x = 1;

$$(c) \lim_{x \to -\infty} \frac{f(x)}{x^2} = 2.$$

2) Studiare la funzione

$$f(x) = |x|e^{-2x}$$

e tracciare un grafico qualitativo.

3) Determinare, se esistono, i seguenti limiti:

(a)
$$\lim_{x \to 0^{+}} x^{x} \frac{\sin x}{x}.$$
(b)
$$\lim_{x \to 0} \frac{e^{3x} - 1 - 3\sin(x)}{x^{2}}$$

4) Determinare:

(a)
$$\int_0^{\pi} x \sin(3x) dx$$
(b)
$$\int \frac{x^3}{3x^2 - 6} dx.$$

RISOLUZIONI

Esercizio 1. (a). Si ha:

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} 2(x-1) = 0,$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (a^{2}x^{2} - a) = a(a-1).$$

Pertanto la funzione è continua in x = 1 per a = 0, a = 1.

(b). Poiché ogni funzione derivabile in un punto è a fortiori continua in quel punto, ci si può limitare ai casi a = 0, a = 1. Si ha:

$$\lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{+}} 2 = 2,$$

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{a^{2}x^{2} - a}{x - 1} = \begin{cases} 0 & a = 0 \\ 2 & a = 1. \end{cases}$$

Pertanto la funzione è derivabile in x=1 per a=1. In alternativa si possono eguagliare i limiti delle derivate dx e sx, purché sia chiaro che si considerano solo i casi in cui f è continua.

(c). Si ha

$$\lim_{x \to -\infty} \frac{f(x)}{x^2} = \lim_{x \to -\infty} \frac{a^2 x^2 - a}{x^2} = a^2 = 2 \iff a = \pm \sqrt{2}.$$

Esercizio 2. Identico al corrispondente del compito A, scambiando x con -x.

Esercizio 3. (a). Identico al corrispondente del compito B.

(b). Sviluppando al secondo ordine in x = 0:

$$\lim_{x \to 0} \frac{e^{3x} - 1 - 3\sin(x)}{x^2} = \lim_{x \to 0} \frac{1 + 3x + \frac{9}{2}x^2 + o(x^2) - 1 - 3(x + o(x^2))}{x^2}$$
$$= \lim_{x \to 0} \frac{\frac{9}{2}x^2 + o(x^2)}{x^2} = \frac{9}{2}.$$

Esercizio 4. (a). Integrando per parti:

$$\int x \cos(3x) \, dx = \frac{1}{3} x \sin(3x) - \frac{1}{3} \int \sin(3x) \, dx = +\frac{1}{3} x \sin(3x) + \frac{1}{9} \cos(3x) + C.$$

Quindi

$$\int_0^{\pi} x \sin(3x) \, dx = -\frac{2}{9}.$$

(b). Mediante divisione:

$$\frac{x^3}{x^2 - 2} = x + \frac{2x}{x^2 - 2}.$$

Decomponendo in fratti semplici

$$\frac{x^3}{x^2 - 2} = x + \frac{1}{x - \sqrt{2}} + \frac{1}{x + \sqrt{2}},$$

pertanto

$$\int \frac{x^3}{2x^2 - 4} \, dx = \frac{1}{2} \int x \, dx + \frac{1}{2} \int \frac{1}{x - \sqrt{2}} + \frac{1}{2} \int \frac{1}{x + \sqrt{2}} = \frac{1}{4} x^2 + \frac{1}{2} \log|x^2 - 2| + C.$$

Allo stesso risultato si perviene anche senza effettuare la decomposizione, osservando che $2x = (x^2 - 2)'$.

Prova scritta del 08.01.03 — compito A

1) Determinare estremo superiore e inferiore e, se esistono, massimo e minimo delle successioni

(a)
$$a_n = 4n - \frac{1}{n+1}, \quad n \in N;$$

(b)
$$b_n = \pi - \arctan(-a_n), \quad n \in \mathbb{N}.$$

2) Studiare la funzione

$$f(x) = -\frac{x^2}{\log(2x)}$$

e tracciarne un grafico qualitativo.

3) Studiare la convergenza semplice e assoluta della serie:

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \log n}.$$

4) (a). Calcolare

$$\int \frac{1}{x} \left(\frac{1}{3\log x} - \frac{9}{9 + \log^2 x} \right) dx.$$

(b) (facoltativo). Determinare i valori di $A \in R$ per i quali la funzione

$$f(x) = \frac{x - A\sin x + x^9}{x^3 \sqrt{x}}$$

è integrabile in senso improprio in (0,1).

RISOLUZIONI

Esercizio 1. (a). La successione è monotona crescente in quanto somma di successioni monotone crescenti. Ovvero:

$$4(n+1) > 4n$$
, $-\frac{1}{n+2} > -\frac{1}{n+1} \implies a_{n+1} > a_n \ \forall \ n \in \mathbf{N}$.

(alternativamente si può effettuare un calcolo diretto). Di conseguenza

$$\sup\{a_n\} = \lim_{n \to \infty} a_n = \infty, \quad \inf\{a_n\} = a_0 = -1.$$

(b). Utilizzando la monotonia della funzione arctan e il risultato precedente, si ottiene:

$$a_n \uparrow \Longrightarrow -a_n \downarrow \Longrightarrow \arctan(-a_n) \downarrow \Longrightarrow b_n \uparrow.$$

Di conseguenza

$$\sup\{b_n\} = \lim_{n \to \infty} b_n, = \frac{3\pi}{2}, \quad \inf\{b_n\} = b_0 = \frac{3\pi}{4}.$$

Esercizio 2. Dom $f = (0, \infty) \setminus \{\frac{1}{2}\}, f(x) > 0$ in $(0, \frac{1}{2}), f(x) < 0$ in $(\frac{1}{2}, \infty)$. Si has

$$\lim_{x \to 0^+} f(x) = 0$$

$$\lim_{x \to \frac{1}{2}^-} f(x) = +\infty,$$

$$\lim_{x \to \frac{1}{2}^+} f(x) = -\infty,$$

 $\lim_{x\to\infty} f(x) = -\infty \text{ (mediante de l'Hôpital o gerarchie)}.$

La retta $x=\frac{1}{2}$ è asintoto verticale. Non ci sono asintoti obliqui in quanto

$$\lim_{x\to\infty}\frac{f(x)}{x} = -\infty \text{ (mediante de l'Hôpital o gerarchie)}.$$

Si ha:

$$f'(x) = -\frac{x(2\log(2x) - 1)}{\log^2(2x)},$$

da cui

$$f'(x) > 0 x \in (0, \frac{1}{2}) \cup (\frac{1}{2}, \frac{e^{\frac{1}{2}}}{2}),$$

$$f'(x) < 0 x \in (\frac{e^{\frac{1}{2}}}{2}, \infty),$$

$$f'(\frac{e^{\frac{1}{2}}}{2}) = 0.$$

Pertanto la funzione è crescente in $(0,\frac{1}{2})$ e in $(\frac{1}{2},\frac{e^{\frac{1}{2}}}{2})$, decrescente in $(\frac{e^{\frac{1}{2}}}{2},\infty)$, ha un massimo locale in $x=\frac{e^{\frac{1}{2}}}{2}$ con $f(\frac{e^{\frac{1}{2}}}{2})=\frac{e}{2}$, e sup $f=\infty$, inf $f=-\infty$. Si ha:

$$f''(x) = -\frac{2\log^2(2x) - 3\log(2x) + 2}{\log^3(2x)},$$

da cui (il numeratore è sempre positivo)

$$f''(x) > 0$$
 $x \in (0, \frac{1}{2}),$
 $f''(x) < 0$ $x \in (\frac{1}{2}, \infty).$

Pertanto la funzione è convessa in $(0,\frac{1}{2})$ e concava in $(\frac{1}{2},\infty)$. Non ha punti di flesso.

Esercizio 3. La successione

$$a_n = \frac{1}{n \log n}, \quad n \ge 2$$

è a termini non negativi. Quindi la serie è a segno alterno. Poiché

$$\lim_{n\to\infty} a_n = 0$$

е

$$a_{n+1} < a_n \iff 0 < \frac{1}{n+1} < \frac{1}{n}, \ 0 < \frac{1}{\log(n+1)} < \frac{1}{\log(n)},$$

per il criterio di Liebnitz la serie converge. La serie non è assolutamente convergente: infatti è noto che

$$\sum_{n=1}^{\infty} \frac{1}{n(\log n)^{\beta}} \quad \text{diverge se } \beta \le 2.$$

Esercizio 4. (a). Effettuando la sostituzione $y = \log x$, si ottiene

$$\int \frac{1}{x} \left(\frac{1}{3 \log x} - \frac{9}{9 + \log^2 x} \right) dx = \frac{1}{3} \int \frac{1}{y} dy - \int \frac{1}{1 + \frac{y^2}{9}} dy.$$

L'integrazione del primo addendo è immediata:

$$\frac{1}{3} \int \frac{1}{y} \, dy = \frac{1}{3} \log|y| + C.$$

Per il secondo si effettua la sostituzione $t = \frac{y}{3}$:

$$\int \frac{1}{1 + \frac{y^2}{9}} dy = 3 \int \frac{1}{1 + t^2} dt = 3 \arctan t + C = 3 \arctan(\frac{y}{3}) + C.$$

In conclusione

$$\int \frac{1}{x} \left(\frac{1}{3 \log x} - \frac{9}{9 + \log^2 x} \right) dx = \frac{1}{3} \log |\log x| + 3 \arctan(\frac{\log x}{3}) + C.$$

(b). La funzione è continua in (0,1]. Si verifica facilmente che

$$f(x) \sim \begin{cases} \frac{(1-A)}{x^2 \sqrt{x}} & A \neq 1\\ \frac{1}{6\sqrt{x}} & A = 1 \end{cases} \quad \text{per } x \to 0^+.$$

Pertanto, dal criterio del confronto asintotico segue che f è integrabile in senso improprio in (0,1) se e solo se A=1.

Prova scritta del 08.01.03 — compito B

1) Determinare estremo superiore e inferiore e, se esistono, massimo e minimo delle successioni

(a)
$$a_n = -3n + \frac{2}{n+1}, \quad n \in N;$$

$$(b) b_n = -\log(3 - a_n), \quad n \in N.$$

2) Studiare la funzione

$$f(x) = \frac{x^2}{\log(3x)}$$

e tracciarne un grafico qualitativo.

3) Studiare la convergenza semplice e assoluta della serie:

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \log n}.$$

4) (a). Calcolare

$$\int \cos x \left(\frac{5}{\sin x} - \frac{4}{4 + \sin^2 x} \right) dx.$$

(b) (facoltativo). Determinare i valori di $A \in R$ per i quali la funzione

$$f(x) = \frac{x - A\log(1+x) + x^7}{x^2\sqrt{x}}$$

è integrabile in senso improprio in (0,1).

RISOLUZIONI

Esercizio 1. (a). La successione è monotona decrescente in quanto somma di successioni monotone decrescenti. Ovvero:

$$-3(n+1) < -3n, \quad \frac{2}{n+2} < \frac{2}{n+1} \implies a_{n+1} < a_n \ \forall \ n \in \mathbf{N}.$$

(alternativamente si può effettuare un calcolo diretto). Di conseguenza

$$\inf\{a_n\} = \lim_{n \to \infty} a_n = -\infty, \quad \sup\{a_n\} = a_0 = 2.$$

(b). Utilizzando la monotonia della funzione log e il risultato precedente, si ottiene:

$$a_n \downarrow \implies 3 - a_n \uparrow \implies \log(3 - a_n) \uparrow \implies b_n \downarrow.$$

Di conseguenza

$$\inf\{b_n\} = \lim_{n \to \infty} b_n, = -\infty, \quad \sup\{b_n\} = b_0 = 0.$$

Esercizio 2. $\text{Dom} f = (0, \infty) \setminus \{\frac{1}{3}\}, f(x) < 0 \text{ in } (0, \frac{1}{3}), f(x) > 0 \text{ in } (\frac{1}{3}, \infty).$ Si ha:

$$\lim_{x\to 0^+} f(x) = 0$$

$$\lim_{x\to \frac{1}{3}^-} f(x) = -\infty,$$

$$\lim_{x\to \frac{1}{3}^+} f(x) = +\infty,$$

$$\lim_{x\to \infty} f(x) = +\infty \text{ (mediante de l'Hôpital o gerarchie)}.$$

La retta $x=\frac{1}{3}$ è asintoto verticale. Non ci sono asintoti obliqui in quanto

$$\lim_{x \to \infty} \frac{f(x)}{x} = +\infty \text{ (mediante de l'Hôpital o gerarchie)}.$$

Si ha:

$$f'(x) = \frac{x(2\log(3x) - 1)}{\log^2(3x)},$$

da cui

$$f'(x) < 0 x \in (0, \frac{1}{3}) \cup (\frac{1}{3}, \frac{e^{\frac{1}{2}}}{3}),$$

$$f'(x) > 0 x \in (\frac{e^{\frac{1}{2}}}{3}, \infty),$$

$$f'(\frac{e^{\frac{1}{2}}}{3}) = 0.$$

Pertanto la funzione è decrescente in $(0, \frac{1}{3})$ e in $(\frac{1}{3}, \frac{e^{\frac{1}{2}}}{3})$, crescente in $(\frac{e^{\frac{1}{2}}}{3}, \infty)$, ha un minimo locale in $x = \frac{e^{\frac{1}{2}}}{3}$ con $f(\frac{e^{\frac{1}{2}}}{3}) = \frac{2e}{9}$, e sup $f = \infty$, inf $f = -\infty$. Si ha:

$$f''(x) = \frac{2\log^2(3x) - 3\log(3x) + 2}{\log^3(3x)},$$

da cui (il numeratore è sempre positivo)

$$f''(x) < 0$$
 $x \in (0, \frac{1}{3}),$
 $f''(x) > 0$ $x \in (\frac{1}{3}, \infty).$

Pertanto la funzione è concava in $(0, \frac{1}{3})$ e convessa in $(\frac{1}{3}, \infty)$. Non ha punti di flesso.

Esercizio 3. Identico al compito A.

Esercizio 4. (a). Effettuando la sostituzione $y = \sin x$, si ottiene

$$\int \cos x \left(\frac{5}{\sin x} - \frac{4}{4 + \sin^2 x} \right) \, dx = 5 \int \frac{1}{y} \, dy - \int \frac{1}{1 + \frac{y^2}{4}} \, dy.$$

L'integrazione del primo addendo è immediata:

$$5\int \frac{1}{y} \, dy = 5\log|y| + C.$$

Per il secondo si effettua la sostituzione $t = \frac{y}{2}$:

$$\int \frac{1}{1 + \frac{y^2}{4}} \, dy = 2 \int \frac{1}{1 + t^2} \, dt = 2 \arctan t + C = 2 \arctan(\frac{y}{2}) + C.$$

In conclusione

$$\int \cos x \left(\frac{5}{\sin x} - \frac{4}{4 + \sin^2 x} \right) dx = 5 \log|\sin x| + 2 \arctan(\frac{\sin x}{2}) + C.$$

(b). La funzione è continua in (0,1]. Si verifica facilmente che

$$f(x) \sim \begin{cases} \frac{(1-A)}{x\sqrt{x}} & A \neq 1\\ \frac{1}{2\sqrt{x}} & A = 1 \end{cases} \quad \text{per } x \to 0^+.$$

Pertanto, dal criterio del confronto asintotico segue che f è integrabile in senso improprio in (0,1) se e solo se A=1.

Prova scritta del 20.01.03 — compito A

1) Data la successione

$$\begin{cases} a_{n+1} = 2a_n - 1 & n \ge 0 \\ a_0 = 3 \end{cases}$$

- (a) provare, utilizzando il principio di induzione, che $a_n > 1$ per ogni $n \ge 0$;
- (b) (supponendo vera la tesi in (a)) provare che a_n è monotona crescente;
- (c) (supponendo vera la tesi in (b)) determinare

$$\lim_{n\to\infty}a_n.$$

2) Calcolare, se esistono, i seguenti limiti:

(a)
$$\lim_{n \to \infty} \left(\sqrt[n]{n} - \frac{3^n}{n!} \right)$$
(b)
$$\lim_{x \to 1} \frac{(1 + \log x)^{\pi} - e^{x-1}}{x - 1}.$$

(b)
$$\lim_{x \to 1} \frac{(1 + \log x)^{\pi} - e^{x-1}}{x - 1}$$

3) (a) Studiare la funzione

$$f(x) = \cos^2 x - \sin x$$

e tracciarne un grafico qualitativo.

(b) Calcolare

$$\int_0^{\frac{\pi}{4}} (\cos^2 x - \sin x) dx.$$

4) Determinare le soluzioni nel campo complesso dell'equazione

$$z^3 - \frac{1}{1+i} = 0$$

RISOLUZIONI

Esercizio 1. (a).

$$\mathcal{P}_0$$
 è vera: $a_0=3>1.$
$$\mathcal{P}_n \Longrightarrow \mathcal{P}_{n+1}: \qquad a_{n+1}=2a_n-1 \stackrel{\mathcal{P}_n}{>} 2-1=1.$$

(b).

$$a_{n+1} = 2a_n - 1 > a_n \iff a_n > 1$$
 vera per (a)

(c). Per (b)

$$\exists \lim_{n \to \infty} a_n = L \in (a_0, \infty] = (3, \infty].$$

D'altra parte, passando al limite nella definizione della successione si ottiene

$$L \in \mathbf{R} \Longrightarrow L = 2L - 1 \iff L = 1,$$

quindi necessariamente $L = +\infty$.

Esercizio 2. (a). Poiché

$$\lim_{n \to \infty} \sqrt[n]{n} = 1, \quad \lim_{n \to \infty} \frac{3^n}{n!} = 0,$$

si ottiene

$$\lim_{n \to \infty} \sqrt[n]{n} - \frac{3^n}{n!} = 1.$$

(b). Ponendo y = x - 1:

$$\lim_{x \to 1} \frac{(1 + \log x)^{\pi} - e^{x-1}}{x - 1} = \lim_{y \to 0} \frac{(1 + \log(1 + y))^{\pi} - e^{y}}{y}$$

$$= \lim_{y \to 0} \frac{(1 + y + o(y))^{\pi} - (1 + y + o(y))}{y}$$

$$= \lim_{y \to 0} \frac{(1 + \pi y + o(y) - 1 - y - o(y))}{y}$$

$$= \pi - 1.$$

Esercizio 3. (a). Dom $f = \mathbf{R}$. La funzione è periodica di periodo 2π , quindi limiteremo l'analisi all'intervallo $[0, 2\pi]$. Si ha

$$f(x) \ge 0 \iff 1 - sen^2 x - \sin x \ge 0 \iff sin x \le \frac{\sqrt{5} - 1}{2}.$$

Pertanto

$$\begin{split} f(x) &< 0 \qquad x \in (\arcsin(\frac{\sqrt{5}-1}{2}), \pi - \arcsin(\frac{\sqrt{5}-1}{2})) \\ f(x) &= 0 \qquad x = \arcsin(\frac{\sqrt{5}-1}{2}), x = \pi - \arcsin(\frac{\sqrt{5}-1}{2}) \\ f(x) &> 0 \qquad \text{altrimenti.} \end{split}$$

Ovviamente (la funzione è continua e periodica) non esistono asintoti. Si ha:

$$f'(x) = -\cos x (2\sin x + 1),$$

da cui

$$f'(x) > 0 x \in (\frac{\pi}{2}, \frac{7\pi}{6}) \cup (\frac{3\pi}{2}, \frac{11\pi}{6})$$

$$f'(x) = 0 x = \frac{\pi}{2}, \ x = \frac{7\pi}{6}, \ x = \frac{3\pi}{2}, \ x = \frac{11\pi}{6}$$

$$f'(x) < 0 \text{altrimenti.}$$

Si ha inoltre:

$$f(\frac{\pi}{2}) = -1$$
, $f(\frac{7\pi}{6}) = f(\frac{11\pi}{6}) = \frac{5}{4}$, $f(\frac{3\pi}{2}) = 1$.

Pertanto:

$$\min f = -1 \qquad \max f = \frac{5}{4},$$

$$x = \frac{\pi}{2} \qquad \text{punto di minimo assoluto}$$

$$x = \frac{3\pi}{2} \qquad \text{punto di minimo locale}$$

$$x = \frac{7\pi}{6}, \ x = \frac{11\pi}{6} \qquad \text{punti di massimo assoluto.}$$

Esercizio 4. Si ha

$$\frac{1}{1+i} = \frac{1}{2}(1-i) = \frac{\sqrt{2}}{2}e^{i\frac{7\pi}{4}},$$

da cui le soluzioni sono

$$z_1 = 2^{-\frac{1}{6}} e^{i\frac{7\pi}{12}},$$

$$z_2 = 2^{-\frac{1}{6}} e^{i\frac{5\pi}{4}},$$

$$z_3 = 2^{-\frac{1}{6}} e^{i\frac{23\pi}{12}}.$$

Prova scritta del 20.01.03 — compito B

1) Data la successione

$$\begin{cases} a_{n+1} = 3a_n - 2 & n \ge 0 \\ a_0 = 3 \end{cases}$$

- (a) provare, utilizzando il principio di induzione, che $a_n > 1$ per ogni $n \ge 0$;
- (b) (supponendo vera la tesi in (a)) provare che a_n è monotona crescente;

(c) (supponendo vera la tesi in (b)) determinare

$$\lim_{n\to\infty}a_n.$$

2) Calcolare, se esistono, i seguenti limiti:

(a)
$$\lim_{n \to \infty} \sqrt[n]{n} \cdot \frac{3^n}{n!}$$
(b)
$$\lim_{x \to \pi} \frac{(1 - \sin x)^7 - e^{x - \pi}}{x - \pi}.$$

3) (a) Studiare la funzione

$$f(x) = \cos x - \sin^2 x$$

e tracciarne un grafico qualitativo.

(b) Calcolare

$$\int_0^{\frac{\pi}{4}} (\cos x - \sin^2 x) dx.$$

4) Determinare le soluzioni nel campo complesso dell'equazione

$$z^3 + \frac{1}{1+i} = 0.$$

RISOLUZIONI

Esercizio 1. (a).

$$\mathcal{P}_0$$
 è vera: $a_0 = 3 > 1$.
$$\mathcal{P}_n \Longrightarrow \mathcal{P}_{n+1}: \qquad a_{n+1} = 3a_n - 2 \stackrel{\mathcal{P}_n}{>} 3 - 2 = 1.$$

(b).

$$a_{n+1} = 3a_n - 2 > a_n \iff a_n > 1$$
 vera per (a)

(c). Per (b)

$$\exists \lim_{n \to \infty} a_n = L \in (a_0, \infty] = (3, \infty].$$

D'altra parte, passando al limite nella definizione della successione si ottiene

$$L \in \mathbf{R} \Longrightarrow L = 3L - 2 \iff L = 1,$$

quindi necessariamente $L = +\infty$.

Esercizio 2. (a). Poiché

$$\lim_{n \to \infty} \sqrt[n]{n} = 1, \quad \lim_{n \to \infty} \frac{3^n}{n!} = 0,$$

si ottiene

$$\lim_{n \to \infty} \sqrt[n]{n} \cdot \frac{3^n}{n!} = 0.$$

(b). Ponendo $y = x - \pi$:

$$\lim_{x \to \pi} \frac{(1 - \sin x)^7 - e^{x - \pi}}{x - \pi} = \lim_{y \to 0} \frac{(1 + \sin y)^7 - e^y}{y}$$

$$= \lim_{y \to 0} \frac{(1 + y + o(y))^7 - (1 + y + o(y))}{y}$$

$$= \lim_{y \to 0} \frac{(1 + 7y + o(y) - 1 - y - o(y))}{y}$$

$$= 6.$$

Esercizio 3. (a). Dom $f = \mathbf{R}$. La funzione è periodica di periodo 2π , quindi limiteremo l'analisi all'intervallo $[0, 2\pi]$. Si ha

$$f(x) \ge 0 \iff \cos x - 1 + \cos^2 x \ge 0 \iff \cos x \ge \frac{\sqrt{5} - 1}{2}.$$

Pertanto

$$f(x) < 0 \qquad x \in \left(\arccos(\frac{\sqrt{5} - 1}{2}), 2\pi - \arccos(\frac{\sqrt{5} - 1}{2})\right)$$

$$f(x) = 0 \qquad x = \arccos(\frac{\sqrt{5} - 1}{2}), x = 2\pi - \arccos(\frac{\sqrt{5} - 1}{2})$$

$$f(x) > 0 \qquad \text{altrimenti.}$$

Ovviamente (la funzione è continua e periodica) non esistono asintoti. Si ha:

$$f'(x) = -\sin x \left(2\cos x + 1\right),$$

da cui

$$f'(x) > 0$$
 $x \in (\frac{2\pi}{3}, \pi) \cup (\frac{4\pi}{3}, 2\pi)$
 $f'(x) = 0$ $x = \frac{2\pi}{3}, x = \pi, x = \frac{4\pi}{3}, x = 2\pi$
 $f'(x) < 0$ altrimenti.

Si ha inoltre:

$$f(\frac{2\pi}{3}) = f(\frac{4\pi}{3}) = -\frac{5}{4}, \ f(2\pi) = 1, \ f(\pi) = -1.$$

Pertanto:

$$\min f = -\frac{5}{4} \qquad \max f = 1,$$

$$x = 2\pi \qquad \text{punto di massimo assoluto}$$

$$x = \pi \qquad \text{punto di massimo locale}$$

$$x = \frac{2\pi}{3}, \ x = \frac{4\pi}{3} \qquad \text{punti di minimo assoluto.}$$

Esercizio 4. Si ha

$$-\frac{1}{1+i} = \frac{1}{2}(i-1) = \frac{\sqrt{2}}{2}e^{i\frac{3\pi}{4}},$$

da cui le soluzioni sono

$$z_1 = 2^{-\frac{1}{6}} e^{i\frac{\pi}{4}},$$

$$z_2 = 2^{-\frac{1}{6}} e^{i\frac{11\pi}{12}},$$

$$z_3 = 2^{-\frac{1}{6}} e^{i\frac{19\pi}{12}}.$$

Prova scritta del 03.02.03

1) Dimostrare per n = 1, 2... la disuguaglianza

$$\frac{1}{\sqrt{n}} < \sqrt{n+1} - \sqrt{n-1}.$$

2) (a) Studiare la funzione

$$f(x) = |e^{-x} - 1|e^{2x}$$

e tracciare un grafico qualitativo.

(b). Calcolare

$$\int_{e}^{e^2} \left(\frac{1}{x \log x} \right) dx.$$

3) (a). Dimostrare per x > -1 la disuguaglianza

$$\log\left(1+x\right) \le x.$$

(b). Studiare il carattere della serie

$$\sum_{n=1}^{+\infty} \frac{1}{n} \log \left(1 + \frac{1}{\sqrt[4]{n}} \right).$$

4) Studiare la funzione

$$f(x) = x^{\frac{1}{x}}$$

e tracciarne un grafico qualitativo.

RISOLUZIONI

Esercizio 1. Elevando al quadrato $(\sqrt{n+1} - \sqrt{n-1} > 0)$:

$$\frac{1}{n} \ < \ n+1+n-1-2\sqrt{n^2-1} \ \Longleftrightarrow \ \sqrt{n^2-1} < n-\frac{1}{2n}.$$

Elevando al quadrato $(n - \frac{1}{2n} > 0)$:

$$n^2 - 1 < n^2 + \frac{1}{4n^2} - 1 \iff \frac{1}{4n^2} > 0 \text{ vera.}$$

Esercizio 2 (a). $D = \mathbf{R}$. La funzione è continua in \mathbf{R} per composizione. Poichè $e^{-x} - 1 > 0$ per x < 0, si ha

$$f(x) = \begin{cases} (e^{-x} - 1)e^{2x} = e^x - e^{2x} & x \le 0\\ (1 - e^{-x})e^{2x} = e^{2x} - e^x & x > 0. \end{cases}$$

Si ha

$$\lim_{x \to \infty} f(x) = +\infty, \quad \lim_{x \to -\infty} f(x) = 0,$$

$$f'(x) = \begin{cases} e^x - 2e^{2x} & x < 0, \\ 2e^{2x} - e^x & x \ge 0, \end{cases}$$

$$\lim_{x \to 0^-} f'(x) = -1, \quad \lim_{x \to 0^+} f'(x) = 1,$$

quindi x=0 è un punto angoloso. Lo studio del segno di f'(x) (che omettiamo) mostra che

$$f(x)$$
 crescente per $x \in (-\infty, -\log 2)$ e per $x \in (0, \infty)$, $f(x)$ decrescente per $x \in (-\log 2, 0)$,

Pertanto:

 $\sup f = +\infty, \; \min f = 0, \; x = -\log 2$ punto di massimo locale.

Si ha

$$f''(x) = \begin{cases} e^x - 4e^{2x} & x < 0, \\ 4e^{2x} - e^x & x \ge 0. \end{cases}$$

Lo studio del segno di f''(x) mostra che

$$f(x)$$
 convessa per $x \in (-\infty, -\log 4)$ e $(0, \infty)$,
 $f(x)$ concava per $x \in (-\log 4, 0)$,
 $f'(-\log 4) = 0$ flesso.

Esercizio 2 (b). Mediante la sostituzione $y = \log x$:

$$\int_{0}^{e^{2}} \frac{1}{x \log x} dx = \int_{1}^{2} \frac{1}{y} dy = \log y \Big|_{1}^{2} = \log 2.$$

Esercizio 3 (a). Si considera la funzione

$$f(x) = x - \log(1+x).$$

Si ha $D=(-1,\infty),\,f\in C(D).$ Poiché

$$\lim_{x \to -1^+} f(x) = +\infty, \quad \lim_{x \to \infty} f(x) = +\infty,$$

il minimo assoluto è interno, e poiché non ci sono punti singolari, va ricercato tra i punti stazionari. Si ha

$$f'(x) = 1 - \frac{1}{1+x} = \frac{x}{1+x} \stackrel{>}{<} 0 \iff x \stackrel{>}{<} 0.$$

Pertanto

$$\min f = f(0) = 0$$

da cui segue la tesi.

Esercizio 3 (b). Poiché

$$\frac{1}{n}\log\left(1+\frac{1}{\sqrt[4]{n}}\right) \sim \frac{1}{n^{\frac{5}{4}}} \quad \text{per } n \to \infty,$$

la serie converge per il criterio del confronto asintotico.

Esercizio 4. $D=(0,\infty)$. La funzione si può riscrivere come

$$f(x) = e^{\frac{\log x}{x}}.$$

Si ha

$$\lim_{x \to 0^+} f(x) = 0, \quad \lim_{x \to \infty} f(x) = 1.$$

$$f'(x) = e^{\frac{\log x}{x}} \frac{1}{x^2} (1 - \log x) > 0 \iff x < e.$$

Quindi

$$\max f = f(e) = e^{\frac{1}{e}}, \quad \inf f = 0.$$

Prova scritta del 01.04.03

1) Studiare la funzione

$$f(x) = e^{\sqrt{|x-1|}}$$

e tracciarne un grafico qualitativo.

2) Calcolare

$$\int \left(e^x \sin x\right)^2 dx.$$

3) Studiare il carattere della serie

$$\sum_{n=1}^{+\infty} \frac{\sin\left(\frac{\pi}{2} + n\pi\right)}{\sqrt{n}}.$$

4) Studiare la funzione

$$f(x) = \log(e^x - x - 1)$$

e tracciarne un grafico qualitativo.

RISOLUZIONI

Esercizio 1. $D = \mathbf{R}$. La funzione è continua in \mathbf{R} per composizione, e simmetrica rispetto all'asse x = 1. Si ha

$$\lim_{x \to +\infty} f(x) = +\infty, \quad \lim_{x \to +\infty} \frac{f(x)}{x} = +\infty,$$

e per simmetria

$$\lim_{x \to -\infty} f(x) = +\infty, \quad \lim_{x \to -\infty} \frac{f(x)}{x} = +\infty.$$

Quindi non vi sono asintoti obliqui. Si ha

$$f'(x) = \frac{1}{2} e^{\sqrt{x-1}} (x-1)^{-\frac{1}{2}} \text{ per } x > 1,$$

$$\lim_{x \to 1^+} f'(x) = +\infty.$$

Pertanto (utilizzando la simmetria)

$$f(x)$$
 crescente per $x \in (1, +\infty)$
 $f(x)$ decrescente per $x \in (-\infty, 1)$,
 $x = 1$ punto di cuspide

 \mathbf{e}

$$\sup f = +\infty$$
, $\min f = 1$, $x = 1$ punto di minimo assoluto.

Si ha

$$f''(x) = \frac{1}{4} e^{\sqrt{x-1}} (x-1)^{-\frac{3}{2}} (\sqrt{x-1} - 1)$$
 per $x > 1$,

da cui

$$f(x)$$
 convessa per $x \in (2, +\infty)$
 $f(x)$ concava per $x \in (1, 2)$,
 $x = 2$ punto di flesso,

e per simmetria

$$f(x)$$
 convessa per $x \in (-\infty, 0),$
 $f(x)$ concava per $x \in (0, 1),$
 $x = 0$ punto di flesso.

Esercizio 2. Per parti:

$$\int (e^x \sin x)^2 dx = \int e^{2x} \sin x \sin x dx$$

$$= -e^{2x} \sin x \cos x + 2 \int e^{2x} \sin x \cos x dx + \int e^{2x} \cos^2 x dx$$

$$= -e^{2x} \sin x \cos x + e^{2x} \sin^2 x - 2 \int e^{2x} \sin^2 x dx$$

$$+ \int e^{2x} dx - \int e^{2x} \sin^2 x dx$$

Quindi

$$\int (e^x \sin x)^2 dx = \frac{1}{4} e^{2x} \left(\frac{1}{2} - \sin x \cos x + \sin^2 x \right) + C.$$

Esercizio 3. È sufficiente osservare che $\sin\left(\frac{\pi}{2} + n\pi\right) = (-1)^n$. Pertanto, poiché la successione $a_n = n^{-1/2}$ è a termini non-negativi, monotona decrescente e tendente a zero, dal criterio di Leibnitz segue che la serie è convergente.

Esercizio 4. Poiché la funzione $y = e^x$ è strettamente convessa in \mathbf{R} e la retta y = 1 + x è tangente ad $y = e^x$ in x = 0, si ottiene

$$e^x - x - 1 \ge 0 \ \forall x \in \mathbf{R}, \quad e^x - x - 1 = 0 \iff x = 0.$$

Pertanto $D = \mathbf{R} \setminus \{0\}$. La funzione è continua in D per composizione. Si ha

$$\lim_{x \to -\infty} f(x) = +\infty, \quad \lim_{x \to +\infty} f(x) = +\infty.$$

Poiché

$$\lim_{x \to -\infty} \frac{f(x)}{x} = 0, \quad \lim_{x \to +\infty} \frac{f(x)}{x} = 1$$

е

$$\lim_{x \to +\infty} f(x) - x = \lim_{x \to +\infty} \log\left(1 - \frac{1+x}{e^x}\right) = 0,$$

la retta y = x è asintoto obliquo per $x \to +\infty$. Inoltre

$$\lim_{x \to 0} f(x) = -\infty.$$

Si ha

$$f'(x) = \frac{e^x - 1}{e^x - x - 1} \quad \text{per } x \in D.$$

Pertanto

$$f(x)$$
 crescente per $x \in (0, +\infty)$

$$f(x)$$
 decrescente per $x \in (-\infty, 0)$,

non ci sono estremi locali e

$$\sup f = +\infty, \inf f = -\infty.$$

Si ha

$$f''(x) = \frac{e^x(1-x)-1}{(e^x-x-1)^2}.$$

Per determinarne il segno si può ricorrere a uno studio di funzione ausiliario: considerata la funzione

$$g(x) = e^x(1-x) - 1$$

si ha $g'(x) = -xe^x$. Pertanto g è crescente in $(-\infty, 0)$ e decrescente in $(0, \infty)$. Quindi x = 0 è punto di massimo assoluto, e poiché g(0) = 0 si conclude che

$$f(x)$$
 concava per $x \in (-\infty, 0)$ e per $x \in (0, \infty)$.

Prova scritta del 03.06.03

1) Calcolare i seguenti limiti:

$$\lim_{n \to \infty} \frac{3^n - n^{243}}{2^n + 1};$$

(b)

$$\lim_{x \to 0^+} \left(x + \log(1 - e^{-x}) - \log\left(\frac{1}{x}\right) \right).$$

2) Calcolare la somma della serie

$$\sum_{n=1}^{\infty} (e^{-n-1}(e-1)).$$

3) Studiare la funzione

$$f(x) = \frac{1}{x^3} - \frac{1}{x^6}$$

e tracciarne un grafico qualitativo.

4) Calcolare

$$\int_0^1 \frac{x^2 - 3}{x + 1} \, dx.$$

RISOLUZIONI

Esercizio 1.

$$\lim_{n \to +\infty} \frac{3^n - n^{243}}{2^n + 1} \ge \lim_{n \to +\infty} \frac{3^n}{2^{n+1}} - \frac{n^{243}}{2^n + 1} \ge \lim_{n \to +\infty} \frac{1}{2} \frac{3^n}{2^n} - \frac{n^{243}}{2^n} = +\infty$$

$$\lim_{n \to +\infty} \frac{3^n - n^{243}}{2^n + 1} = +\infty$$

$$\lim_{n \to +\infty} \left(x + \log(1 - e^{-x}) - \log(\frac{1}{x}) \right) = -\infty$$

Esercizio 2. La serie può sia essere ricondotta ad una serie geometrica, ovvero

$$\sum_{n=1}^{\infty} (e^{-n-1}(e-1)) = \frac{(e-1)}{e} \sum_{n=1}^{\infty} (e^{-n}) = \frac{1}{e},$$

sia ad una serie telescopica, ovvero

$$\sum_{n=1}^{\infty} (e^{-n-1}(e-1)) = \sum_{n=1}^{\infty} (e^{-n} - e^{-n-1}) = \frac{1}{e}.$$

Esercizio 3. La funzione è definita per ogni x reale eccetto il punto 0. Il dominio è $D = \{x \in R \mid \text{tali} \text{ che } x \neq 0\}$. La funzione non presenta simmetrie. Per lo studio del segno, riscriviamo la funzione come

$$f(x) = \left(\frac{x^3 - 1}{x^6}\right).$$

Nel suo insieme di definizione il denominatore è sempre positivo, ed il numeratore $x^3 - 1$ risulta nullo per x = 1, positivo per x > 1 e negativo altrimenti. Studio dei limiti:

$$\lim_{x \to +\infty} \frac{1}{x^3} - \frac{1}{x^6} = 0$$

$$\lim_{x \to -\infty} \frac{1}{x^3} - \frac{1}{x^6} = 0$$

$$\lim_{x \to 0^-} \frac{1}{x^3} - \frac{1}{x^6} = -\infty$$

$$\lim_{x \to 0^+} \frac{1}{x^3} - \frac{1}{x^6} = -\infty$$

Calcolo della derivata prima:

$$f'(x) = \left(\frac{1}{x^3} - \frac{1}{x^6}\right)' = -\frac{3}{x^4} + \frac{6}{x^7} =$$
$$= -\left(\frac{3}{x^4}\right)\left(1 - \frac{2}{x^3}\right)$$

$$f'(x) = 0$$
 se e solo se $x = (2)^{\frac{1}{3}}$

Nell'insieme di definizione, la funzione f' è negativa per $x > (2)^{\frac{1}{3}}$, positiva $x < (2)^{\frac{1}{3}}$, quindi la funzione è decrescente per $x > (2)^{\frac{1}{3}}$, mentre è crescente per $x < (2)^{\frac{1}{3}}$. Pertanto il punto è di massimo relativo. Dal comportamento ai limiti si deduce che il punto è di massimo assoluto. Inoltre

$$f((2)^{\frac{1}{3}}) = \frac{1}{4}.$$

Calcolo della derivata seconda: a tale scopo conviene scrivere la derivata prima come

$$f'(x) = -\frac{3}{x^4} + \frac{6}{x^7}$$

Si ottiene quindi:

$$f''(x) = \frac{12}{x^5} - \frac{42}{x^8} = \left(\frac{6}{x^5}\right) \left(2 - \frac{7}{x^3}\right) = 6\left(\frac{2x^3 - 7}{x^8}\right)$$

Nell'insieme di definizione, il denominatore è sempre positivo, ed il numeratore $6(2x^3-7)$ risulta nullo per $x=(\frac{7}{2})^{\frac{1}{3}}$, positivo per $x>(\frac{7}{2})^{\frac{1}{3}}$ e negativo altrimenti.

La funzione f risulta convessa per $x > (\frac{7}{2})^{\frac{1}{3}}$ e concava altrimenti. Il punto $x = (\frac{7}{2})^{\frac{1}{3}}$ è un punto di flesso.

Esercizio 4.

$$\int_0^1 \frac{x^2 - 3}{(x+1)} dx = \int_0^1 \frac{x^2 - 1 - 2}{(x+1)} dx$$
$$\int_0^1 \frac{x^2 - 1}{(x+1)} dx - \int_0^1 \frac{2}{(x+1)} dx = \int_0^1 \frac{(x+1)(x-1)}{(x+1)} dx - 2 \int_0^1 \frac{1}{(x+1)} dx$$

Quindi

$$\int_0^1 \frac{x^2 - 3}{(x+1)} dx = \int_0^1 x - 1 dx - 2 \log 2 = \frac{1}{2} - 1 - 2 \log 2 = -\frac{1}{2} - 2 \log 2$$

Prova scritta del 17.07.03

1) Un banchiere vi propone il seguente contratto: ogni mese triplica il vostro capitale e ogni mese detrae 10 EUR di spese. Per quale delle seguenti somme iniziali il contratto non è svantaggioso per voi, e perché?

(a)
$$a_0 = 4 \text{ EUR}$$
; (b) $a_0 = 5 \text{ EUR}$; (b) $a_0 = 6 \text{ EUR}$.

2) Data la funzione

$$f(x) = \frac{x^2 - x^{\frac{1}{2}}}{x - 1},$$

determinare: (a) dominio di definizione; (b) limiti per $x \to 1$ ed $x \to +\infty$; (c) eventuali asintoti orizzontali, verticali, obliqui.

3) Determinare A in modo tale che

$$\int_0^1 \frac{x^2 + A + 1}{x^2 + 1} \, dx = 0.$$

4) Data

$$f(x) = \log(x \sin(x)),$$

calcolare: (a) f'(x); (b) $\lim_{x \to \pi^{-}} (f'(x) - \frac{1}{x})$.

RISOLUZIONI

Esercizio 1. Detto a_n il capitale all'*n*-esimo mese, si ha:

$$a_{n+1} = 3 a_n - 10.$$

Si tratta quindi di una successione definita per ricorrenza.

(a) Se $a_0 = 4$ allora $a_n < 4$ per ogni n, quindi il contratto è svantaggioso. Infatti, per induzione,

$$a_1 = 3 \cdot 4 - 10 = 2 < 4,$$

e se $a_n < 4$ allora

$$a_{n+1} = 3a_n - 10 < 3 \cdot 4 - 10 = 2 < 4.$$

- (b) Allo stesso modo si verifica che see $a_0 = 5$ allora $a_n = 5$ per ogni n, quindi il contratto non è svantaggioso.
- (c) Allo stesso modo si verifica che se $a_0 = 6$ allora $a_n > 6$ per ogni n, quindi il contratto non è svantaggioso.

Esercizio 2. (a). La funzione $x \mapsto x^{\frac{1}{2}}$ è definita in $[0, \infty)$, e la funzione $x \mapsto 1/(x-1)$ in $\mathbb{R} - \{1\}$. Pertanto

$$D = [0, \infty) \setminus \{1\}.$$

(b). Ponendo y = x - 1 e ricordando che $(1 + y)^{\alpha} - 1 \sim \alpha y$ per $y \to 0$, si ha:

$$\lim_{x \to 1} \frac{x^2 - x^{\frac{1}{2}}}{x - 1} = \lim_{y \to 0} \frac{(y + 1)^{\frac{1}{2}} \left((y + 1)^{\frac{3}{2}} - 1 \right)}{y} = \frac{3}{2}.$$
 (1)

Per $x \to \infty$ si ha immediatamente

$$\lim_{x \to \infty} \frac{x^2 - x^{\frac{1}{2}}}{x - 1} = \lim_{x \to \infty} \frac{x + o(1)}{1 + o(1)} = \infty.$$
 (2)

(c). Poiché f è continua da destra in zero, non ci sono asintoti verticali in x=0. Per (1), non ci sono asintoti verticali in x=1 (anzi, f si estende per continuità in x=1). Per (2), non ci sono asintoti orizzontali per $x\to +\infty$. Poiché

$$\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^2 - x^{\frac{1}{2}}}{x(x-1)} = 1$$

e

$$\lim_{x \to \infty} (f(x) - x) \; = \; \lim_{x \to \infty} \frac{x^2 - x^{\frac{1}{2}}}{x - 1} - x \; = \; \lim_{x \to \infty} \frac{x - x^{\frac{1}{2}}}{x - 1} \; = \; 1,$$

la funzione ha asintoto obliquo y = x + 1 per $x \to +\infty$.

Esercizio 3. Si ha

$$\int_0^1 \frac{x^2 + A + 1}{x^2 + 1} \, dx = \int_0^1 1 \, dx + A \int_0^1 \frac{1}{x^2 + 1} \, dx = 1 + A \arctan(x) \Big|_0^1 = 1 + A \frac{\pi}{4}.$$

Pertanto $A = -\frac{4}{\pi}$.

Esercizio 4. (a). Utilizzando le regole di derivazione, si ottiene

$$f'(x) = \frac{\sin(x) + x\cos(x)}{x\sin(x)} = \frac{1}{x} + \frac{\cos(x)}{\sin(x)}$$

(b). Pertanto (attenzione al segno!)

$$\lim_{x \to \pi^{-}} f'(x) - \frac{1}{x} = \lim_{x \to \pi^{-}} \frac{\cos(x)}{\sin(x)} = -\infty.$$

Prova scritta del 17.09.03

1) (a) Calcolare

$$\lim_{n \to \infty} \left(\sin \left(\frac{1}{n} \right) - \frac{1}{n} \right).$$

(b) Al variare di $x \in \mathbb{R}$, determinare il carattere della serie

$$\sum_{n=1}^{\infty} \pi^{nx}.$$

2) Studiare la funzione

$$f(x) = \log\left(\sqrt{x^2 - 1} - x\right)$$

e tracciarne un grafico qualitativo.

3) Calcolare

$$\int_{1}^{e} x \, \log(x^2) \, dx.$$

4) Determinare le soluzioni nel campo complesso dell'equazione

$$z^2 - 2\operatorname{Im}(z) = 2\operatorname{i}\operatorname{Im}(z).$$

RISOLUZIONI

Esercizio 1. (a) Poiché

$$\lim_{n \to \infty} \sin\left(\frac{1}{n}\right) = 0 \quad e \quad \lim_{n \to \infty} \frac{1}{n} = 0,$$

si ottiene immediatamente

$$\lim_{n \to \infty} \left(\sin \left(\frac{1}{n} \right) - \frac{1}{n} \right) = 0.$$

(b) Poiché $\pi^{nx} = (\pi^x)^n$, si riconosce una serie geometrica di ragione π^x . Poiché, essendo $\pi > 1$,

$$\pi^x \stackrel{\leq}{>} 1 \quad \text{per } x \stackrel{\leq}{>} 0,$$

la serie converge per x < 0 e diverge a $+\infty$ per $x \ge 0$. Alternativamente, essendo la serie a termini non negativi, si può utilizzare il criterio del rapporto,

$$\lim_{n\to\infty}\frac{\pi^{(n+1)x}}{\pi^{nx}} \;=\; \pi^x \left\{ \begin{array}{l} >1 & \text{per } x>0 \quad \Rightarrow \text{ la serie diverge a } +\infty \\ =1 & \text{per } x=0 \\ <1 & \text{per } x<0 \quad \Rightarrow \text{ la serie converge,} \end{array} \right.$$

e una verifica diretta per x = 0.

Esercizio 2. Si ha

$$x^{2} - 1 > 0 \iff x \in I := (-\infty, -1] \cup [1, \infty)$$

e, per $x \in I$,

$$\sqrt{x^2 - 1} - x > 0 \iff \sqrt{x^2 - 1} > x.$$

Quest'ultima disuguaglianza è vera per $x \in I \cap (-\infty, 0)$, mentre per $x \in I \cap [0, \infty)$ equivale, passando ai quadrati, a

$$x^2 - 1 > x^2$$
.

che è falsa. Pertanto $D = I \cap (-\infty, 0) = (-\infty, -1]$. Si ha

$$f(-1) = 0$$
, $\lim_{x \to -\infty} f(x) = +\infty$.

Per la derivata prima si ottiene

$$f'(x) = -\frac{1}{\sqrt{x^2 - 1}} < 0 \text{ per } x \in (-\infty, -1),$$

e

$$\lim_{x \to -1^-} f'(x) = -\infty.$$

In particolare f è monotona decrescente. Per la derivata seconda si ottiene

$$f''(x) = x(x^2 - 1)^{-\frac{3}{2}} < 0 \text{ per } x \in (-\infty, -1),$$

pertanto la funzione è concava in $(-\infty, -1)$.

Esercizio 3. Si ha, integrando per parti,

$$\int_{1}^{e} x \log(x^{2}) dx = \int_{1}^{e} 2 x \log(x) dx$$

$$= \left[x^{2} \log(x)\right]_{1}^{e} - \int_{1}^{e} x dx$$

$$= e^{2} - \frac{1}{2}e^{2} + \frac{1}{2}$$

$$= \frac{1}{2}(e^{2} + 1).$$

Esercizio 4. Posto z = x + iy, l'equazione si riscrive come

$$x^2 - y^2 + 2ixy - 2y = 2iy$$
.

Eguagliando parte reale e coefficiente immaginario si ottiene

$$\begin{cases} x^2 - y^2 - 2y = 0 \\ 2y(x-1) = 0, \end{cases}$$

ovvero

$$\begin{cases} x^2 = 0 \\ y = 0, \end{cases} \text{ oppure } \begin{cases} 1 - y^2 - 2y = 0 \iff y = -(1 \pm \sqrt{2}) \\ x = 1. \end{cases}$$

Pertanto le soluzioni sono:

$$z_1 = 0$$
, $z_2 = 1 - i(1 + \sqrt{2})$, $z_3 = 1 - i(1 - \sqrt{2})$.